
all,

PHYSICAL REVIEW B 1 SEPTEMBER 1997-IVOLUME 56, NUMBER 9
Semiempirical tight-binding interatomic potentials based on the Hubbard model
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By use of the perturbation method for the Hubbard model, we discuss the contribution of the interatomic
electron correlations to the cohesive energy in terms of the bond-order potential. With the first-order approxi-
mation for the bond order, we present a semiempirical tight-binding model for the interatomic potential. Based
on this model, the influence of the on-site Coulomb interaction on materials properties such as phase stability,
Cauchy pressure, and elastic anisotropy ratio is studied. It is shown that although it is a pair-functional one, the
present model can describe very well the elastic properties and phase stabilities of the bcc transition metals
without resorting to angular bonding or spline-function modeling. The model is also applied to calculating the
epitaxial Bain paths. The results show that V, Nb, Cr, and W have a metastable tetragonal phase while Ta, Mo,
and Fe do not. The vacancy-formation energies and surface tensions calculated with the suggested parameters
for V, Nb, Ta, and Fe are reasonable, while those for Cr, Mo, and W are not correct.@S0163-1829~97!02534-4#
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I. INTRODUCTION

The extensive interest in atomistic simulation for mate
als has resulted in the need to develop robust interato
potentials. The past decade saw the development of diffe
potentials, such as the widely used embedded-atom me
~EAM! for the Cu and Ni columns of the transition metal1

~or its equivalent, the glue model2! and Tersoff’s empirical
many-body potential for Si.3

One path to the quantum-mechanical interatomic pot
tials is to derive them from the very beginning, namely, fro
the Hamiltonian. This has been well exemplified by t
bond-order potential~BOP! of Pettifor, which is derived
from the tight-binding ~TB! Hamiltonian by using the
Lanczos recursion algorithm and the Green’s funct
theory.4–6 It has been shown that both the EAM and t
Tersoff potential are just to some extent the approximati
of the BOP.7 One remarkable success of the BOP is its a
ity to reveal the structural trend across the transition met
However, electron correlations may turn out to be import
for the structural stabilities of narrow band solids like t
d-band transition metals. The role ofd-d electron correla-
tions on the cohesion of the transition metals has been
cussed by Friedel and Sayers using a second-order pert
tion approximation based on Gutzwiller’s approximation.8 It
is shown that the correlation energy increases the cohe
and decreases the surface tension and the maximum e
occurs in the half-filled case. Also the electron correlatio
are important in predicting the ground-state properties
group-IV semiconductors.9 The calculated result for the in
teratomic correlation energy for diamond based on the lo
ansatz is22.52 eV per unit cell, amounting to about a qua
ter of the Hartree-Fock cohesive energy.

The first-order approximation of the BOP, namely, t
second-moment approximation of the tight-binding mo
~TB-SMA!, has been proposed by a number of authors.10,11
560163-1829/97/56~9!/5235~8!/$10.00
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In the TB-SMA, the cohesive energy is written as

Ecoh5
1

2 (
i , j Þ i

Vi j ~Ri j !2(
i
A(

j Þ i
hi j

2 ~Ri j !, ~1!

wherehi j are the hopping integrals,Vi j are the repulsive pair
potentials added to avoid collapse, andRi j are the distances
between atomsi and j . The above model can exactly b
derived provided that the density of state is of rectangu
shape. It has been shown that Eq.~1! is able to describe very
well the properties of the fcc transition metals and allo
with full or nearly full d bands.12 However, there are som
problems when it is used to model the bcc transition me
with half-filled or nearly-half-filledd bands. The calculated
elastic anisotropy ratios are sometimes too large. Moreo
it usually tends to predict the close-packed lattice as
ground-state structure if the cutoff distance is reasona
long ~so that the contribution of the atoms beyond the cut
to the total energy can be reasonably smaller than the des
structural energy difference!. This is a common problem fo
the pair-functional models.13 There have been some attemp
to attack these problems such as using a more flexible sp
function model10,14 and considering contributions of low
order moments.15 However, the spline-function potentials a
short ranged, and the results of structural stabilities produ
by them are sensitive to the unphysically imposed cutoff a
hence quite arbitary. On the other hand, the low-order m
ments method goes beyond the pair-functional category
thus becomes rather time consuming when applied
molecular-dynamics simulation.

In this paper, we use a single-band BOP associated w
the perturbation method for the Hubbard model to deriv
semiempirical TB potential. Based on this model, we stu
the effect of electron correlations on the materials propert
We show that the present model, being a pair-functional o
can be used to give correct phase stabilities and elastic
5235 © 1997 The American Physical Society
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5236 56QIAN XIE AND PENG CHEN
stants for the bcc transition metals. Also it can be used
model the materials with negative Cauchy pressures. M
over, it is applied to studying the Bain paths. It is found th
only some bcc transition metals have a metastable tetrag
phase. On the other hand, the calculated vacancy-forma
energies and surface tensions for Cr, Mo, and W are un
tunately not correct at all, in spite of the fact that those
the other metals are basically reasonable.

II. ELECTRON CORRELATIONS
IN THE BOND-ORDER FORMALISM

To study the electron correlations, the single-band H
bard HamiltonianĤ5ĤTB1Ĥ int is employed, whereĤTB is
the single-band TB Hamiltonian used in the BOP for t
noninteracting electrons,Ĥ int5( is(Ui /2)n̂isn̂i s̄ , with Ui

denoting the on-site Coulomb repulsion, andn̂is the number
operator for the local stateu i & with spin s. In the case when
Ui is small the total energy can be written in the seco
order perturbation form16

Etotal5E01^0uĤ intu0&1(
f Þ0

u^0uĤ intu f &u2

E02Ef
, ~2!

where u0& and u f & are the ground and excited states for t
noninteracting system, which can be written in terms of
Slater determinants constructed with one-electron w
functions, andE0 and Ef are the eigenenergies for th
ground and excited states, respectively.

The first-order perturbation energy is simp
E15(1/2)( isUi^n̂is&^n̂i s̄&, where^n̂is& is the local electron
number on site i with spin s, which is given by

^n̂is&5*EFr is(E)dE, wherer is(E) is the corresponding lo
cal density of states~LDOS! andEF the Fermi energy. There
are two types of second-order terms associated with the
citation of one or two electron-hole pairs. In the case
single electron-hole pair excitation, the perturbation ene
E2

(1)5^0uĤ intu f (1)& can be written as

E2
~1!5(

i j ,s
UiU j^n̂i s̄&^n̂ j s̄&EEF

dEmE
EF

dEp

r i j
s~Em!r j i

s~Ep!

Em2Ep
,

~3!

wherer i j
s (E) are the LDOS~if i 5 j ) and the intersite density

of states~if iÞ j ), defined by

r i j
s~E!52

1

p
lim
h→0

ImGi j
s~E1 ih!, ~4!

whereGi j (E) are the intersite Green’s functions. IfUi and
^ni s̄& do not change from site to site and the bases for
one-particle ground and excited states are orthogonal to
other, then one will findE2

(1)50.16 However, the interatomic
part ofE2

(1) , which is exactly the negative of the intra-atom
part, should not be neglected when calculating mater
properties like the phonon spectrum, since the contribu
of E2

(1) to the dynamical matrix does not vanish. There a
some other reasons which make Eq.~3! not vanish, such as
the effect of intersite charge transfer due to the asymme
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distribution of atoms in the presence of defects. Becaus
these reasons, we shall not neglect this contribution in
following derivation.

In the case of double electron-hole pair excitation, t
perturbation energyE2

(2)5^0uĤ intu f (2)& can be written as

E2
~2!5

1

2(i j ,s
UiU jEEF

dEmEEF
dEnE

EF

dEpE
EF

dEq

3
r i j

s~Em!r i j
s̄ ~En!r j i

s~Ep!r j i
s̄ ~Eq!

Em1En2Ep2Eq
. ~5!

As a reasonable approximation,16 the denominators in Eqs
~3! and ~5! are replaced by average values2Wi j

(1) and
2Wi j

(2). Thus Eqs.~3! and ~5! can be written as

E2
~1!52(

i j ,s

UiU j

Wi j
~1! ^n̂i s̄&^n̂ j s̄&Q i j

s~Pji
s 2Q j i

s ! ~6!

and

E2
~2!52(

i j ,s

UiU j

2Wi j
~2!

Q i j
s Q i j

s̄ ~Pji
s 2Q j i

s !~Pji
s̄2Q j i

s̄ !, ~7!

with

Pi j
s 5EEU

r i j
s~E!dE, ~8!

Q i j
s 5EEF

r i j
s~E!dE, ~9!

whereEU is the upper bound of the band,Q i j
s is the bond

order with spins, andPi j
s is the bond order with full band.

In this paper, magnetism is not considered; i.e., the lo
net spin ^n̂is&2^n̂i s̄& is assumed to be zero, or̂n̂is&
5^n̂i s̄&5Ni /2 (Ni is the on-site occupation number!. If all
the sites are assumed to be equivalent, then the intrasite
relation energy can be expressed by

E2,0
~1!52~2U2/W0

~1!!~N/2!3~12N/2!

and

E2,0
~2!52~U2/W0

~2!!~N/2!2~12N/2!2.

These contributions, together with the termE1, are not the
interatomic parts which contribute to crystal binding~in this
regard, we would like to point out that the treatment in R
8 is problematical since the intrasite correlation terms c
tribute nothing to thecohesive energyof the system!.

For the interatomic contributions, let us first observe wh
Ni j andQ i j ( iÞ j ) will be within the framework of the BOP.
The bond order can be written as4

Q i j 52 (
n50

`

x0n,n0~EF!dan
l2 (

n51

`

x0~n21!,n0~EF!2dbn
l

~10!

and similiarlyPi j can be written as
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Pi j 52 (
n50

`

x0n,n0~EU!dan
l2 (

n51

`

x0~n21!,n0~EU!2dbn
l ,

~11!

where the response functionsx0m,n0(v) are defined by

x0m,n0~v!5
1

p
lim
h→0

ImEv

G0m
l ~E1 ih!Gn0

l ~E1 ih!dE.

~12!

Gnm
l (E) are the Green’s functions on the recursion basisl

is the phase factor for the initial state of the Lanczos rec
sion uC0

l&5(1/A2)@ u i &1exp(if)u j &], which is defined as
l5cosf, anddan

l anddbn
l are the derivatives of the recu

sion coefficientsan
l andbn

l with respect to the phase facto
l: dan

l5]an
l/]l anddbn

l5]bn
l/]l.

If Pettifor’s approximation is used, i.e., the recursion c
efficients are taken to be the same,an

l50, bn
l5 b

52A@(kÞ ihki
2 1(kÞ jhk j

2 #/2, then the reduced respons

functions x̂p5ubuxp(p5m1n12) will be4 x̂p(v)5sin@(p
21)uv]/ @(p21)p#2sin@(p11)uv#/@(p11)p#, with cosuv

5v/2b. In this approximation, the LDOS is of a semiellipt
shape, with the upper bound equal to22b. This corresponds
to uU5p. Therefore,x̂p(EU)50 andPi j 50. Thus we have
the interatomic perturbation energies

Einter5 (
i , j Þ i

FUiU jNiNj

2Wi j
~1!

Q i j
2 2

UiU j

Wi j
~2!

Q i j
4 G , ~13!

where the spin degeneracy has been considered. The a
equation says that the contribution of electron correlation
the binding energy is anonlinear function of the bond order
~while the single-electron contribution scales linearly w
the bond order!.

III. SEMIEMPIRICAL TIGHT-BINDING INTERATOMIC
POTENTIAL

In this section, we simplify the bond order by taking on
the first-order term~i.e., the second-moment term! and write
it as

Q i j 52
h~Ri j !

A(
kÞ i

h2~Rik!

, ~14!

where the prefactor of the first-order electronic respo
function has been dropped~actually it is this prefactor tha
says the correlation effect reaches maximum in the half-fi
case!. Equation~14! is exact for a hydrogen dimer. Consid
ering the physical restriction that the lattice sum of the int
atomic perturbation energy should converge when the cry
lattice is expanded to the atomic limit, we find thatWi j

(1) and
Wi j

(2) should increase with respect to the increasing of
interatomic distance. For simplicity, they are assumed as
lows: UiU jNiNj /Wi j

(1)}hi j andUiU j /Wi j
(2)}hi j . By adding

these two terms to the cohesive energy equation of the B
Ecoh5(1/2)( i , j Þ iV(Ri j )1( i , j Þ ih(Ri j )Q i j @within the first-
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order approximation it is, namely, Eq.~1!#, we have the fol-
lowing expression for the binding energy per atom~for a
perfect crystal!:

E5
1

2(iÞ0
V~Ri !

2A(
iÞ0

g~Ri !1U1(
iÞ0

g3/2~Ri !Y (
iÞ0

g~Ri !

2U2(
iÞ0

g5/2~Ri !Y F(
iÞ0

g~Ri !G2

, ~15!

where Ri is the distance of atomi to the central atom,
g(r )5h2(r ), and U1 ,U2 are two dimensionless constan
related to the on-site Coulomb repulsion of the Hubba
model. Equation~15! is thecentral point of this paper. The
first two terms in Eq.~15! are the conventional TB-SMA
The remaining two terms are due to the Hubbard model,
will be referred to asU terms throughout this paper.

The contribution of the electron correlations to the coh
sive energy should increase when enlarging the interato
spacing or lattice constant~because localization become
more significant!.9 Equation~15! shows this tendency—the
ratio of the electron-correlation term (U2 term! to the
second-moment term,U2( iÞ0g5/2(Ri)/@( iÞ0g(Ri)#5/2, in-
creases when the lattice constant is increased.

According to the classification of Carlsson,13 Eq. ~15! is a
pair-functional model. The pair-functional potentials a
much simpler than the angularly dependent potentials
molecular-dynamics simulations. However, at least th
problems hinder the application of the conventional pa
functional potentials like the EAM or TB-SMA. The first on
is that they usually tend to predict the most close-pac
lattice to be the ground-state structure.13 The second one is
that they impose positive Cauchy pressure~because the sec
ond derivative of the embedding function or second mom
is always positive!. The third one is that they usually giv
very wrong elastic constants for materials with low elas
anisotropy ratios. These problems are crucial in the field
computer simulation for crystal growth, because first in ord
to predict which structure can be grown on the substrate
need a reliable interaction model which is capable of rep
ducing the correct bulk properties, and second, the physic
feasible structure of strained layers is related to the ph
stabilities and elastic constants.

IV. INFLUENCE OF U TERMS
ON MATERIAL PROPERTIES

In this section, we study the influence of the Coulom
parametersU1 andU2 on the physical properties of materia
by using analytical modeling so that the results can be m
explicit. For convenience, we assume thatg(r ) andV(r ) are
power-law functions:

V~r !5VeS R1e

r D a

, ~16!

g~r !5geS R1e

r D b

, ~17!
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whereR1e is the equilibrium nearest-neighbor distance, a
Ve , ge , a, andb are parameters. The lattice sums

F~R1!5 (
m51

`

wmV~pmR1!,

G~R1!5 (
m51

`

wmg~pmR1!, J~R1!5 (
m51

`

wmg3/2~pmR1!,

and

K~R1!5 (
m51

`

wmg5/2~pmR1!

~wherewm are the numbers of atoms on themth shell with
radiuspmR1) are

F~R1!5S~a!Ve~R1e /R1!a, G~R1!5S~b!ge~R1e /R1!b,

J~R1!5S~3b/2!ge
3/2~R1e /R1!3b/2,

and

K~R1!5S~5b/2!ge
5/2~R1e /R1!5b/2,

where

S~x!5 (
m51

`

wm /pm
x .

We choose the following properties which reflect the ext
of how the interatomic potential deviates from the TB-SM

A. Phase stability

In the present model, the binding energy as a function
the nearest-neighbor distanceR1 is written as

Ecoh5
1

2
S~a!VeS R1e

R1
D a

2AgeX~b!S R1e

R1
D b/2

, ~18!

where

X~b!5AS~b!2U1

S~3b/2!

S~b!
1U2

S~5b/2!

S2~b!
. ~19!

One can see from the above equation that theU terms im-
prove the flexibility of the mininum energies with respect
structures.

B. Cauchy pressure

The elastic constants consist of the contributions of th
terms: Cmn5Cmn

SMA1dCmn1d2Cmn , where Cmn
SMA are con-

tributed by the first two terms of Eq.~15!, and dCmn and
d2Cmn are contributed by the other two terms, respectiv
~see the Appendix for the expressions!. The Cauchy pressur
can be expressed by

V~C122C44!5
b2Age

9 FAS~b!

4
2U1

S~3b/2!

S~b!
d

t
.

f

e

y

1U2

4S~5b/2!

S2~b!
G . ~20!

Equation~20! shows that the present model is able to d
scribe the materials with negative Cauchy pressures. If
nearest-neighbor approximation~NNA! is used, i.e.,
S(x)5z, then V(C122C44)5(b2Age/9)(Az/414U2 /z
2U1), and the Cauchy pressure will change from negative
positive at a certain coordination number~Fig. 1!. This is
consistent with the fact that covalent solids with diamo
structure (z54) have negative Cauchy pressures while m
of the transition metals (z58 for bcc andz512 for fcc! have
positive ones.

C. Anisotropy ratio

The anisotropy ratio for the elastic constantsQ refers to
the ratio of the rhombohedral shear modulusC44 and the
tetragonal shear modulusC85(C112C12)/2. For bcc, with a
cutoff between second- and third-nearest-neighbor distan
Q can be expressed by

Q5
8

9

R1
2Veff9 ~R1!2R1Veff8 ~R1!

R2
2Veff9 ~R2!2R2Veff8 ~R2!

. ~21!

The effective pair potential for the present model is the co
bination of three Lennard-Jones-like functions:

Veff~r !5FVeS R1e

r D a

2
Age

AS~b!
S R1e

r D bG
1U1

Age

S~b!F S R1e

r D 3b/2

2
S~3b/2!

S~b! S R1e

r D bG
2U2

Age

S2~b!
F S R1e

r D 5b/2

2
2S~5b/2!

S~b! S R1e

r D bG .
~22!

The collision radii for the above three Lennard-Jones-l
potentials are

FIG. 1. Cauchy pressureC122C44 vs coordination numberz for
the cubic structures diamond, bcc, and fcc. The circles are exp
mental data, taken from Simmons and Wang~Ref. 17!. The curve is
the fitting result withU150.80, U250.25.
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@aVeAS~b!/bAge#
1/~a2b!R1e , @3S~b!/2S~3b/2!#2/bR1e ,

and

@5S~b!/4S~5b/2!#2/3bR1e ,

respectively. The problem of the anisotropy ratio for the b
transition metals lies in the fact that the difference betwe
the curvatures for the effective pair potential at the first- a
second-nearest-neighbor distances should not be too la
From Eq.~22!, one can see this can be reached because
negative third term plays the role of reducing the curvatu
Within the framework of the TB-SMA~or the EAM!, it is
rather difficult to use conventional functions like the exp
nential or power law to slow down the rapidly decaying b
havior of the curvature for the effective pair potential, b
cause the decaying parameters determined from experim
data are usually too large.

V. APPLICATIONS OF THE POTENTIALS

In this section, we shall apply the above model to stu
real materials. For real materials we have to determine
potential parameters at first. Usually a least-squares fit
procedure is used, but in this work we do not intend to sp
too much effort on obtaining the optimal parameters. We j
find some suitable parameters and demonstrate numeri
the model capability.

A. Fitting procedure

In the above section we employ power-law functions
study the model capability in an analytical way. Numerica
a disadvantage for the power-law functions is that they c
verge too slowly (r 2a.e2ar). We found that whatever the
other parametersa and b should satisfy the equalityab/2
59BV/Es , if one wants to obtain correct ground-state pro
erties~i.e., the lattice constantae , the cohesive energyEs ,
and the bulk modulusB). If the hopping integral converge
faster (b becomes greater!, then the pair potential will con-
verge slower (a smaller! and vice versa. Therefore, the lon
range tails cannot be eliminated by increasinga or b. Of
course, more long-range potentials will result in greater co
putational effort because a larger neighbor list is needed

In this section, we use the lattice-inversion method18–20

~LIM ! based on the Mo¨bius inversion transform in numbe
theory21,22 to simplify the fitting procedure for obtaining th
model paramters from the experimental data. We supp
that the cohesive energy as a function of nearest-neigh
distance is given by the universal binding energy curve
Roseet al.,23

E~R1!52EsF11aS R1

R1e
21D GexpF2aS R1

R1e
21D G ,

~23!

wherea5A9BV/Es, B is the bulk modulus,V the atomic
volume, andEs the sublimation energy. We have the latti
summations of the square hopping integral and pair poten

(
m51

`

wmg~pmR1!5G~R1!, ~24!
c
n
d
ge.
he
.
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-
-
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y
e
g
d
t
lly

-

-

-
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(
m51

`

wmV~pmR1!5F~R1!, ~25!

where

~1/2!F~R1!5E~R1!1AG~R1!2U1J~R1!/G~R1!

1U2K~R1!/G2~R1!. ~26!

And similiar to Ref. 18,G(R1) is assumed to be an expone
tial function:

G~R1!5GeexpF2bS R1

R1e
21D G . ~27!

By using the LIM,g(r ) and V(r ) can be inverted from
Eqs.~24! and ~25!:

g~r !5 (
m51

`

mmG~pmr !, ~28!

V~r !5 (
m51

`

mmF~pmr !, ~29!

wheremm are the Mo¨bius inversion coefficients for crysta
lattices. The pair potential and hopping integral defin
above decay much faster~exponentially! than the power-law
functions. Compared with the conventional fitting procedu
the inversion scheme skips searching for the optimal par
eters for the pair potential and correct ground-state prope
can be guaranteed.

The input experimental data for the universal equation
binding energy and suggested parameters are listed in T
I. The inverted results for the square hopping integrals a
pair potentials for the bcc transition metals are shown in F
2. The pair potentials have attraction wells~especially for Cr,
Mo, and W!.

B. Phase stabilities and elastic constants

Instead ofC11, C12, andC44, we calculateC8, C44, and
B by distorting the crystal lattice with the correspondin
strain matrices. The cutoff is carefully placed at the distan
where the contribution of the hopping integral and pair p

TABLE I. Input experimental data and suggested parameters
the bcc transition metals. The lattice constants are in Å, the co
sive energies are in eV, the bulk moduli@which are obtained from
experimental data by usingB5(C1112C12)/3# are in 1011 N/m2,
U1, U2, b are dimensionless, andGe are in eV2.

Element ae Es B b Ge U1 U2

V 3.03a 5.31a 1.55b 6.5 150 3.5 9.1
Nb 3.30a 7.57a 1.71b 6.2 300 2.9 8.1
Ta 3.30a 8.10a 1.96b 5.7 300 3.5 10.0
Cr 2.88a 4.10a 1.90b 6.0 200 10.0 28.0
Mo 3.15a 6.82a 2.63b 8.0 100 11.5 30.0
W 3.16a 8.90a 3.10b 6.0 100 16.4 50.0
Fe 2.87a 4.28a 1.08b 6.0 100 3.7 8.5

aReference 24.
bReference 17.
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5240 56QIAN XIE AND PENG CHEN
tential to the cohesive energy has been small enough to
sure the reliablity of the calculated results for the phase
bilities. The results for the phase stabilities and elas
constants are listed in Tables II and III. The bcc structure
calculated to be the most stable one over a range of coo
nation number from 4~diamond! to 12 ~fcc or hcp!.

A simulation box of size 10310310 ~2000 atoms! is em-
ployed in the calculation of the vacancy-formation energ

FIG. 2. Inverted pair potentials and square hopping integ
g(r ) ~inset! as a function of interatomic distance. The unit f
g(r ) is eV2. ~a! For V, Nb, Ta, and Fe;~b! for Cr, Mo, and W.

TABLE II. Calculated energy differences for the bcc transiti
metals with the present model. The energies are in eV. The e
librium nearest-neighbor distances for the corresponding struct
~in Å! are also given.

Element V Nb Ta Cr Mo W Fe

DE~sc-bcc! 0.854 0.831 1.195 1.947 3.720 2.980 0.7
r 1e~sc! 2.500 2.700 2.720 2.450 2.730 2.660 2.3
DE~fcc-bcc! 0.063 0.083 0.072 0.214 0.108 0.276 0.0
r 1e~fcc! 2.710 2.943 2.943 2.575 2.815 2.823 2.5
DE~hcp-bcc! 0.063 0.083 0.072 0.214 0.105 0.276 0.0
r 1e~hcp! 2.710 2.940 2.950 2.570 2.820 2.820 2.5
DE~diamond-bcc! 1.189 0.980 1.894 1.452 4.570 3.226 1.5
r 1e~diamond! 2.377 2.559 2.663 2.503 2.754 2.693 2.2
n-
a-
c
is
i-

s

Ev ~periodic boundary condition applied tox,y,z directions!
and~100! surface tensionsg100 ~periodic boundary condition
applied tox,y directions!. The vacancy-formation energy i
defined as the energy needed to move an atom from bul
surface, rather than infinity. The unrelaxed results are p
sented in Table III. The relaxation energies for vacancy f
mation ~computed by minimizing the energy with respect
atom positions; only the nearest neighbors around the
cancy are allowed to relax! are given in parentheses. Th
calculated results ofEv for V, Nb, Ta, and Fe are in reason
able agreement with the experimental data while those
unrelaxed surface tensions are higher than the experime
data ~considering relaxation will surely help reduce the e
rors!. Unfortunately, the calculated vacancy-formation en
gies and surface tensions for Cr, Mo, and W are much hig
than the experimental data. It seems that there is some
pendence related to bond breaking that correlates the el
constants~without bond breaking! and the defect propertie
~with bond breaking!. We failed in getting parameters whic
are able to reproduce both. While the defect properties m
be reproduced with appropriate parameters, the results
the elastic constants may be as poor as those produced b
EAM. This severe disagreement seems to imply that the c
tributions from higher moments~i.e., directional bonding!
should be considered.

C. Epitaxial Bain path

The martensitic transformation is a first-order displac
solid-solid phase transformation observed in a variety of m
terials. The Bain path refers to the path of intermediate
tragonal states between two phases connected to a mart

ls

i-
es

9
0
7
1
7
0
7
5

TABLE III. Calculated elastic constants, vacancy formation e
ergies, and surface tensions for the bcc transition metals with
present model. The first row is the calculated results; the secon
the experimental data. The elastic constants are in 1011 N/m2, the
anisotropic ratiosQ52C44/(C112C12) are dimensionless,g100 are
in mJ/m2, andEv are in eV. The data in parentheses are the rel
ation energies for vacancy formation. Source of experimental d
Elastic constants are from Ref. 17; vacancy-formation energy o
is from Ref. 14; those for the others are from Ref. 10; surfa
energy for V is the theoretical result of Ref. 10, those for the oth
are experimental values from Ref. 10.

Element C11 C12 C44 Q g100 Ev

V 2.141 1.256 0.427 0.96 4554 2.96~0.9!
2.279 1.187 0.426 0.78 2600 2.10

Nb 2.243 1.442 0.261 0.65 3880 3.42~0.9!
2.466 1.332 0.281 0.50 2300 2.04

Ta 2.508 1.687 0.849 2.07 5109 4.46~1.2!
2.660 1.612 0.824 1.57 2780 2.90

Cr 3.919 0.881 1.042 0.69 16960 16.8~3.3!
3.91 0.896 1.032 0.69 2200 1.20

Mo 4.318 1.788 1.157 0.92 11968 18.2~2.7!
4.647 1.615 1.089 0.72 2200 2.24

W 5.179 2.067 1.630 1.05 21376 25.0~4.9!
5.224 2.044 1.606 1.01 2800 3.15

Fe 1.558 0.845 0.783 2.20 6030 2.25~1.1!
1.519 0.862 0.762 2.32 2200 1.79
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tic transformation, like the bcc and fcc. It has been poin
out in Ref. 25 that the study of Bain paths is instructive
the physics of crystal growth and thin films,26 where we need
to understand the structures and properties of the epita
film or strained superlattice. The epitaxial Bain path, p
duced by isotropic stress or strain in the~100! plane of te-
tragonal phases accompanied by zero stress perpendicu
the plane, may help to predict which structure will form on
given substrate.

The martensitic transformation has a tie with both t
phase stabilities and~the nonlinearity of! the elastic con-
stants. Therefore, the calculation of the Bain path provide
comprehensive test for the validity of the present mod
There are many paths to go from fcc to bcc or convers
These paths are called Bain paths if the geometries a
such a path have tetragonal symmetry. To calculate the B
path means calculating the cohesive energy as a functio
two lattice parametersa andc, E(c,a), and finding the en-
ergy minimum for each givena, wherea is the length of a
face-centered orthorhombic cell in thex,y directions andc is
that in thez direction.c/a51 corresponds to the fcc struc
ture while c/a5A2/2 corresponds to the bcc structure. T
Bain paths for some transition metals including vanadi
have been calculated by using the full-potential lineariz
augmented plane wave~FP-LAPW! method based on th
density functional theory.25 For vanadium, it is reported tha
for both the epitaxial Bain path~i.e., a is fixed andc adjusts
to minimize the binding energy! and the uniaxial Bain path
~i.e.,c is fixed anda adjusts to minimize the binding energy!
the fcc phase is a saddle point, while there exists a m
stable body-centered-tetragonal~bct! phase. In Fig. 3 we
show that the present model also predicts a similar epita
Bain path for vanadium, though the path shape and the m
nitude of the energy difference are different. The sad
point predicted by the present model for vanadium~0.06 eV/
atom! is about one-fifth of that by theab initio method~0.29
eV/atom!. The lattice constant and energy difference for t
metastable bct phase given by the present model
a52.57 Å (c/a51.67) and 0.052 eV/atom, in compariso
with the ab initio result a52.41 Å (c/a51.83) and 0.1
eV/atom. Although the potentials for Cr, Mo, and W prese
poor defect properties, the results for the elastic proper
and phase stabilities are quite good; therefore we also ca
late their Bain paths. For Nb, Cr, and W similar behavio
with that of V are found. But for Ta, Mo, and Fe, the Ba
paths are found to have a plateau across the fcc phase. T
is no metastable phase for these metals.

VI. CONCLUDING REMARKS

Based on the perturbation method for the Hubbard mo
and the BOP, we have derived a semiempirical tight-bind
model for the interatomic interaction. It is shown that t
present model can be used to reproduce very well the ela
properties and phase stabilities of the bcc transition me
However, the results of vacancy-formation energies and
face tensions for Cr, Mo, and W calculated with the su
gested parameters are wrong.

Albeit the model is directly parametrized and used
simulate real metals, it does not necessarily mean that e
tron correlations are responsible for all the success and
d
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ure. The model just indicates the role of electron correlatio
on interatomic interaction and physical properties of mate
als with half-filled or nearly-half-filled bands.
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APPENDIX

For cubic crystals, the formulas fordCmn andd2Cmn can
be written as

VdC115U1F 1
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]2J
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2
J

G2

]2G

]«xx
2

2
2
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G3S ]G

]«xx
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FIG. 3. Epitaxial Bain paths for the bcc transition metals. T
relative lattice constant is defined asa/ae , whereae is the equilib-
rium lattice constant for the bcc structure.~a! V, Nb, Ta, and Fe;~b!
Cr, Mo, and W.
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