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With the use of the lattice-inversion method, we present an N-body model for interatomic potential.
The model utilizes a universal cohesion equation of Rose et al., with a tight-binding energy determined
by the Cauchy discrepancy and the difference of the vacancy-formation energy with the sublimation en-
ergy. The lattice dynamics and the thermal expansion of the noble metals are studied based on the

present model.

I. INTRODUCTION

It has been discovered by Rose, Smith, Guinea, and
Ferrante (RSGF) that the total cohesive energy as a func-
tion of lattice spacing can be depicted well by a universal
Rydberg function in the case of bimetallic adhesion, me-
tallic cohesion, metallic and covalent bonds in chem-
isorption, and many diatomic molecules."? The RSGF
equation can be simply constructed from the equilibrium
lattice constant a,, the sublimation energy E,, and the
bulk modulus B,. It differs from the cohesion equation of
Murnaghan® and needs no input of the pressure deriva-
tive of the bulk modulus. In the past decade, the equa-
tion was frequently applied to material simulations. For
example, it was used to fit the ab inito cohesive energies
versus lattice constants for Ni-Pt compounds,* determine
embedding functions for the embedded-atom method>®
(EAM), and define the perturbation series in the
equivalent-crystal theory.”

The idea of inverting the pair potential from the
cohesion equation first appeared in the work of Carlsson,
Gelatt, and Ehrenreich (CGE),® and was immediately
used to study the ideal tensile strength of copper.’ The
CGE scheme has evident drawbacks, because it is well
known that the cohesive energy cannot be merely ex-
pressed by the lattice sum of pair potentials. The pair-
potential model theoretically yields two vital disagree-
ments with experiments: the Caucy relation and the
overestimate of vacancy-formation energy.’® Instead of
it, there are quite a few other methods, such as the N-
body potential,'® the EAM,'"!? and the tight-binding
model.3 713

In this work, we present an N-body potential model
which is extracted from the RSGF equation by virtue of
the lattice-inversion method (LIM) developed by Chen
et al.'"'® The model avoids the arbitrary fitting and
cutoff procedures used in many existing models by means
of inverting the overlap integral and the pair potential
from the respective lattice sums which can be fitted to
analytical functions embodying the cohesion equation.
To test the model, we study the lattice dynamics and the
thermal expansion of the noble metals.
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II. MODEL

The N-body method defines the cohesive energy of a
d-band metal as

Ezn=%+3 ®R,)—Vn (1)
i#0
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n= 2 P(R,)
i#0

p(r=h%r),

where A (r) is the overlap integral which includes the role
of s-d hybridization, ®(r) is the pair potential, and the
square-root function is to mimic the second-moment ap-
proximation of the tight-binding model.!3

Within the framework of the N-body potential model,
the elastic constants B (bulk modulus), C (tetragonal
shear modulus), and C,, (rhombohedral shear modulus)
of a cubic crystal can be formulated as
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where R; denotes the length of the position vector of site
i, X; and Y; are the x and y components of the position
vector R;, ) is the atomic volume, and ®,Hr) is the
effective pair potential defined by

¢,ﬁ<r)=¢(r)—71_n— (r) . (5)

The Cauchy discrepancy is then
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The vacancy-formation energy in the absence of lattice
relaxation (it has been shown that the contribution of re-
laxation energy to the vacancy-formation energy is not
more than several percent!®) is

E,==13 ®R)— Z[Vn—pR)~Vn]l. O
i50 i#0
For a fcc structure whose coordination number (=12} is
much greater than unity, Eq. (7) can be simplified to be
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The difference of the sublimation energy and the
vacancy-formation energy can be seen from Egs. (1) and

(8):
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With increasing of the lattice spacing, n, the lattice
sum of p(r), will decrease. Therefore it can reasonably be
assumed to be an exponential function with respect to the
nearest-neighbor distance,

R
Ly ]

Rle

. (10)

n(R|)=n.exp [—-a

On assuming Eq. (10) we would like to mention that Ban-
erjea and Smith have found that the variation of the
vacancy-site electron density with respect to the lattice
constant exhibits a universal form of exponential func-
tion, with the scaling length taken as the Thomas-Fermi
screening length.? This finding underpins our assumption
very well, because the square overlap integral is also re-
garded to be proportional to the electron density in light
of the EAM.
Another lattice sum in Eq. (6) can be found to be

2 Rip'(R))=—n,
i£0

a 1
Rle
(11)

Noting that all the inputs are measured on the equilibri-

um lattice R{=R,, one can obtain the two parameters

from Eqgs. (6) and (9) as
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Thus we have the analytical expressions for the lattice '

sums of the square overlap integral and the pair potential
as
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In Eq. (13) the RSGF equation has been introduced.

The individual functions of the overlap integral and
pair potential are uniquely governed by the above two
equations. The potentials defined as such can in principle
include as many neighbors as possible. They can be ob-
tained by using the LIM of Chen et al.'® The basic equa-
tion of the LIM can be expressed by

Flyx)= S, wn)f(Vax)= f(x)

n=1

= S un)FlyVax/B), (14)
n=B

where yx is the lattice constant, V' x is the radius of the
nth shell centered at a given lattice site, w(#n) is the cor-
responding number of atoms on the nth shell [w(n) van-
ishes if n cannot be decomposed into a sum of three
square non-negative integers], and p(z) is the modified
Mobius function, which can be decided from a recursion
formula

n/Bk

where B=1, y=1 for sc structures, and f=2,y =2 for
fec and L 1, structures.

The experimental data for the lattice constants a,, the
sublimination energies E,, the vacancy-formation ener-
gies E,, the bulk moduli B,, and the Cauchy discrepan-
cies C;, —Cy, for Cu, Ag, and Au as the inputs are taken
from Ref. 6 and listed in Table I (for convenience we have

TABLE I. The model inputs a,, E;, B,, E,, and
AC=C,—C,4, and the predicted elastic constants C,;, Cy,, and
C,4 (the first row) by comparison with the experimental values
(the second row). The elastic constants are in 10! erg/cm’, E;
and E, in eV, and q, in A. All the experimental values are tak-
en from Ref. 6.

Atom a, E B, E, AC Cy Cpy Cu
Cu 361 354 138 13 0467 175 118 0.71

1.70 1.225 0.758
Ag 409 2585 104 1.1 0473 1.19 095 048
124 0.934 0.461
Au 408 393 167 09 1150 1.8 159 044
1.86 1.57 042
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dropped out the superscript ¢). The elastic constants C,;,
Ciy, and C4 calculated by the present model are also
tabulated in Table I, in comparison to the experimental
values.

The inverted overlap integrals and pair potentials for
Cu, Ag, and Au are plotted in Fig. 1, for comparison
with the plots of potentials according to Cleri and Rosa-
to.® In Fig. 1 it is shown that the shapes of the two
overlap integrals are generally similar to each other. Un-
like the pure repulsive characteristic of the pair poten-
tials in Ref. 15, the present pair potentials exhibit attrac-
tive regions. They have a minimum and a maximum, and
feature a slightly oscillatory behavior. The oscillatory
behaviors of Cu and Ag are evident, whereas that of Au
is not quite evident. The pair potential of this form may
be understandable, because it has been established that a
pair potential of oscillatory form is due to the s-electron
contribution, which generates a pair potential with a sub-
stantial attractive well and an oscillatory tail, according
to the second-order perturbation approximation of pseu-
dopotential theory.?’

HOI. APPLICATIONS

A. Phonon dispersion

Similar to the derivation of the EAM,?! the N-body
dynamical matrix for a cubic metal can be obtained from

Eq. (1) as
K'Ri 1
2

4v'n?

D(K)=2 3 A;sin’
i7#0

+ X(K)X(K), (16)

where

(Ref. 15).
3 ; 5 6
" R;R; PAR;) |, R/R;
Al'—q)eﬁ(Ri) Riz + Ri Riz

and

R,
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The phonon dispersion relations in the equilibrium lattice
for the noble metals are piotted in Fig. 2. The results are
in perfect agreement with the experimental values of Nil-
son and Rolandson for Cu,”? and of Kamitakahara and
Brockhouse for Ag.”® The predicted results of Au are not
good compared with the experimental results of Lynn,
Smith, and Nicklow.?*

B. Phonon density of states

We know that the alteration of the lattice constant will
result in a change of the phonon spectrum. The relation
is generally described by the simplified Griineisen ap-
proximation, which assumes the negative of the first
derivative of the logarithm of the eigenfrequencies with
respect to the logarithm of the unit-cell volume to be a
constant, the Griineisen constant. The Griineisen con-
stant is positive, implying that the phonon frequencies
will decrease when the lattice expands. Alternatively,
this effect can be elucidated by introducing a density of
states (DOS) considered as a function of both vibrational
frequency and lattice constant, g (w,a). Starting from the
dynamical matrix, the DOS as a function of the lattice
constant can be calculated. Figure 3 shows these rela-
tions for the noble metals.
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C. Thermal expansion

It has been concluded by Marchese, Jacucci, and
Flynn?® and Sutton?® that the original N-body potential of
Finnis and Sinclair'® causes incorrect predictions when
applied to the calculation of linear thermal expansion. In
their calculation for the same item,?”?® Foiles and co-
workers pointed out that the errors might originate from
the fact that the potentials of the Finnis-Sinclair N-body
method are only fitted to elastic constants so that they
fail in depicting anharmonicity effects. To reflect the
anharmonicity, they used the RSGF function to adjust
their EAM and gained excellent agreement with experi-
mental values for thermal expansion.

We will use the present model to study the temperature
behavior of linear thermal expansion of the noble metals.
With the above-defined DOS function, one can write the
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FIG. 2. Phonon dispersions for Cu, Ag, and Au. The open
circles are the experimental values. (a) Cu; (b) Ag; (c) Au.
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FIG. 3. Illustration of the changes of the phonon DOS of the
noble metals with respect to lattice constants.

free energy as a function of lattice constant and tempera-
ture,

F(a,T)=E_ y(a)+Fra,T), 17
with ' '
— o . 1)
FT(a,T)—@BTfo In {2 sinh 2k, T glw,a)do .

To get the thermal expansion, we have to minimize the
free energy so as to find the equilibrium lattice constant
under a given temperature. For performing the numeri-
cal differentiation of the free energy with respect to the
lattice constant, we first select n lattice constants near
equilibrium as the samples and calculate the DOS’s for
the selected samples. For arbitrary lattice constant inside
the interval of sampling length, we suppose that the cor-
responding DOS can be given by using the Lagrange in-
terpolation

n | oa—a;
glw,a)= 3 |1 glw,aq;) . (18)
' =1 A BTG

Figure 4 shows the calculated relations of linear
thermal expansion with temperature for the noble metals.
The predicted results are all greater than experimental
data.”® The errors may be due to the fact that the inputs
for the model are all measured under finite temperature
and therefore must be different from the actual ones un-
der zero temperature.

IV. DISCUSSION

It should be pointed out that, despite the purely empir-
ical treatment in the above sections, the present method
may represent a possible connection between total-energy
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FIG. 4. The linear thermal expansions as a
function of temperature for the noble metals.
The open squares are the experimental data
(Ref. 29) and the full lines denote the calculat-
ed results.

T (K)

computation from first-principles and the interatomic
force method. As we know, although the developing
band theory has enabled us to study materials from the
viewpoint of electronic structure, it is not always applica-
ble, especially when the system in consideration becomes
complicated. As a result, the phenomenological concept
of the interatomic potential still remains as a practical
groundwork for simulating material properties such as
elastic constants, phonon spectra, thermodynamics, and
even the energetics of surfaces, interfaces, fractures, and
grain boundaries. The present method may be a useful
step to facilitate simulations for complex systems at finite
temperature on the basis of less time-consuming first-
principles calculations for selected simple systems as
references. If ab initio results for a,, E,, B,, Cy), Cy,

Py P T S TUPINE SR fet g L P .
¢ 0 100 1% 200 25 NG 0 P 00 1% M0 2% N0 O S L0 150 200 20 6 IN

and E, are available, we can construct an ab initio N-
body potential, and since the ab initio N-body potential
takes the many-body interaction into account, it will be
more applicable than the previous ab initio two-body po-
tential used by CGE. Finally, it should be added that the
present method has been extended to the study of alloy
systems.3°
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