
By Charles Xie

More than fifteen years ago, I worked as a postdoc in computational biophysics. 

Our dream was to uncover the secrets of life through numerical simulations 

based on solving foundational equations in physics. We believed that, if we 

could simulate the motion of every atom and every wavefunction of a protein 

or DNA molecule, we could eventually figure out the tricks of biology.
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Visualizing Student 
Learning

Computation is not the only bottleneck 
in attaining this goal. In fact, through 
over more than half a century of research 
on molecular modeling consecrated by 
three Nobel Prizes (the latest in 2013), 
a wealth of computer code has been 
developed. Meanwhile, many state-of-the-
art supercomputers have been available 
for life scientists.
 The end of a computer run is just 
the beginning of a daunting task: post-
processing vast quantities of calculated 
data. Although scientists can build more 
powerful computers and write more 
efficient code, nothing can replace human 

intelligence for searching spatial, temporal 
and energetic patterns buried in data. 
Ultimately, it is through analyzing these 
patterns that we come to an understanding 
of the science they represent.
 Human analysts rely on visualizations 
to find patterns and trends in an ocean of 
data. For example, the atomic coordinate 
data of a biomolecular system appear to 
be random dots when plotted (Figure 
1a). But when they are connected using a 
code known to scientists, some structures 
emerge (Figure 1b). Many readers can 
recognize that this is a compound of a 
DNA and a protein molecule. Observing 

how this system evolves over time 
under different conditions, we can hope 
to identify the intermolecular forces 
between the protein and the DNA that are 
responsible for phenomena such as DNA 
translation and replication.
 Fifteen years later, I am facing another 
challenge of a similar magnitude. Only 
this time, the data are generated not by 
thousands of atoms in simulations but by 
thousands of students in classrooms. This 
article explains why data visualization has, 
once again, become an indispensable part 
of my research.
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(continued on p. 6)

Mind recorders
One of the most important goals in the 
learning sciences is to understand how 
students learn. Traditionally, learning is 
assessed through tests. But tests may not be 
the best way to measure and monitor the 
development of sophisticated skills such as 
scientific inquiry and engineering design. 
 Just as atoms cannot be seen by the 
naked eye, the workings of the human mind 
are also invisible. Researchers may carefully 
observe students, ask them questions and 
assess their learning from their actions 
and responses, but that approach is too 
laborious to be scalable. To cover all students, 
a fundamentally different method is needed.
 To “see” atoms, scientists invented 
techniques such as X-ray crystallography, 

which produces informative diffraction 
waves. What, then, is the equivalent of 
X-ray diffraction for reading students’ 
minds while they are learning?
 The answer lies in digital inquiry 
and design tools that are by now 
ubiquitous. These interactive tools 
are commonly viewed as “technology 
interventions” introduced to enhance 
learning. But with some additional work, 
they can also be turned into “mind 
recorders” (see Figure 2 for an example) 
because students’ interactions with 
them invariably leave digital traces that 
reflect how a student reacts to problems, 
instruction or other stimuli with actions. 
Such a mind recorder can work at a high 
frequency that enables every mouse, key, 
touch or other sensor signal and every 
change of an artifact property to be 
logged. Recording these data points is 
thus analogous to recording the motion 
of every atom in a biophysics simulation. 
Because these data points also represent 
units of interaction or events that cannot 

be divided further, we often refer to them 
as “atoms.” From the data streams of these 
atoms, a high-resolution picture of learning 
can be reconstructed for in-depth analysis. 
In analogy to the post-processing step in 
computer simulation, we have a data analysis 
job to do.

Data clouds
At first glance, the raw data may appear 
to be simply points scattered in the 
learning space, resembling the atomic 
coordinate data of macromolecules. 
Figure 3 shows such “data clouds” of 
two students’ actions with our Energy3D 
software as they were solving a solar 

urban design challenge. They chose 
the shapes, orientations and layouts of a 
cluster of buildings in a metropolitan area 
with the goal of achieving optimal solar 
performance in different seasons for the 
whole community. How can we extract 
any clue of learning from these seemingly 
random data? 
 Compared to answering multiple-
choice questions, creative inquiry and 
design processes are often highly open-
ended, especially when the problem space 
consists of many degrees of freedom. 
Thus, it may not be feasible to enumerate, 
a priori, all possible pathways for solving 
a specific problem. Given a tremendous 
number of possibilities, researchers can 
hardly find two identical instances in 
student data, posing a great difficulty to 
developing statistical modeling techniques 
for reliably predicting students’ learning 
trajectories. Without such a “compass,” 
it is all too easy to get lost in a cloud of 
data. This difficulty is similar to hard 
problems in natural science. For instance, 
the research on protein folding is also 
confronted by an astronomical number of 
evolutionary pathways in a gigantic phase 
space. As such, insights garnered from 
those fields may guide educational research 
as well.
 Not long ago, educational researchers 
began to seek help from machine learning. 
Educational data mining and learning analyt-
ics are the two closely related research 
branches that have recently emerged as a 
result. However, few researchers in those 
fields face the challenge of analyzing the 
complex learning dynamics in inquiry 
and design activities that is ruled by the 
tyranny of high dimensionality described 
above. This puts our research in a frontier 

Figure 2. Educational researchers use pre/post-tests extensively to 
measure differences in the initial and final states of students in a study. 
In many cases, the in-between states are largely in a “black box.” 
Opening this black box allows researchers to look into what happens in 
every student’s learning process and explain the pre/post-test differences. 
The technology for recording and analyzing the process data is the key. 
This illustration shows how a computer-aided design (CAD) tool such 
as our Energy3D (http://energy.concord.org/energy3d) can be used as a 
“mind recorder” for capturing and tracking many aspects and fabrics of 
an engineering design process.

Figure 1. Visualizations help scientists 
see patterns in data. (a) Raw data of 
atomic coordinates offer no clue about 
the structure of this biomolecular system. 
(b) Structures emerge from the data 
after the dots are connected using some 
visualization schemes.
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of process analytics that has rarely been 
explored. It was through working in this 
vastly unknown area that we realized the 
pivotal importance of computational thinking 
in educational research. This change of 
mindset has enabled us to frame problems 
in learning sciences with concepts in com-
putational science, especially with those 
in signal processing, time series analysis, 
graph theory and pattern recognition. 
Across the board, visualizations are play-
ing a central role in our research and are 
giving rise to new developments in  
learning infographics.

Holographic visualizations
As in any other scientific discipline,  
visualizations are invaluable tools in 
educational research. To see structures 
in data, researchers must first define the 
indicators for measuring student perfor-
mance, proving a hypothesis or capturing 
a cognitive response. Using the molecular 
structure metaphor, these indicators consti-
tute the “chemical bonds” that connect the 
dots or “secondary structures” that track 
learning progresses. Figure 3 illustrates how 
such an indicator can be used to visualize 
iterative patterns in data clouds. Infograph-
ics like this allow evidence of iteration, a 
cognitive process key to engineering design, 
to be visualized and evaluated. 
 In addition to the projection onto 
the axis of time for showing temporal 
patterns, high-dimensional data clouds 

can also be projected onto a Cartesian 
coordinate system to reveal spatial 
patterns or a digraph model of a concept 
map to reveal learning paths. Figure 
4 provides an example of visualizing 
design optimization using a 2D plot 
of artifact movement. This capacity of 
viewing a single data cloud from different 
perspectives to sift different information 
is the result of the “holographic” nature 
of the data, a profound feature that allows 
researchers to simplify problems through 
dimensionality reduction and create reliable 
assessments through triangulation.

Learning sciences as data science
The Common Guidelines for Education Research 
and Development, published in 2013 by the 
Institute of Education Sciences and the 
National Science Foundation, begins, “At its 
core, scientific inquiry is the same in all fields. 
Scientific research, whether in education, 
physics, anthropology, molecular biology, or 
economics, is a continual process of rigorous 
reasoning supported by a dynamic interplay 
among methods, theories, and findings. It 
builds understanding in the form of models 
or theories that can be tested.” 
 Indeed, there has never been a better 
time to highlight the scientific nature of 
educational research. Today, the digi-
tal footprints left behind by millions of 
students who use interactive tools such as 
sensors, simulations or mixed-reality apps 
are being aggregated into a gold mine of 
research data. Similar to what happened in 
molecular biology decades ago, this flux of 
data is driving learning sciences into the 
domain of data science; one may hope that 
this will eventually allow useful learning 
informatics to be engineered.
 But this vision will not be realized 
without extensive interdisciplinary 
research. The discovery of knowledge 
from large sets of learner data is a 
computational problem that can only be 
solved by uniting educational research and 
computational science.

Figure 4. The states of student artifacts can be used as an indicator of design 
optimization. In the solar urban design project, students must constantly 
move buildings in order to look for optimal locations. The absence of building 
movement (a) signals premature design fixation, a problem commonly observed 
in engineering design. Dense trajectory lines (b), on the other hand, suggest 
intensive search for solutions.
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Figure 3. Non-iterative and iterative patterns are “textures” in the data clouds of 
students’ design actions, which can be detected through a dimensionality-reduction 
operation that projects the attributes of artifact index of the data points to the axis 
of time. The degree of iteration is highly suggestive of systematic design. 
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