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We present a systematical method for obtaining analytical long-range embedded-atom potentials based on the
lattice-inversion method. The potentials converge faster (exponentially) than Sutton and Chen’s power-law po-
tentials (Philos. Mag. Lett. 61, 2480(1990)). An interesting relationship between the embedded-atom method
and the universal binding energy equation of Rose et al. (Phys. Rev. B 29, 2963 (1984)) is also pointed out. The
potentials are tested by calculating the elastic constants, phonon dispersions, phase stabilities, surface properties
and melting temperatures of the fcc transition metals. The results are overall in agreement with experimental or
available ab initio data.
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I. INTRODUCTION

There are quite a few problems in atomistic simulation
for which long-range potentials are needed. An impor-
tant one is the problem of structural energy difference
(SED). Normally the minimum SED is of the magnitude
of one percent of the cohesive energy or so. Evidently
if the potential range is only up to the second nearest
neighbors, then a pair functional model will predict no
energy difference between the fcc and hcp structures. We
have to extend the ranges of potentials to further dis-
tance. Usually people impose a cut-off on the potentials
and adjust the model parameters so that correct SED
can be produced. However, the unphysical cut-off proce-
dure thus becomes the dominant factor for predicting the
SED: Suppose we fix the model parameters and change
the cut-off distance, then it is highly possible to find that
the SED varies in sign with respect to the cut-off dis-
tance(see Fig.1 in Ref. 1). The safe way to remove this
drawback is to extend the range of the potentials so that
the contributions from the furthest atoms become less
than one percent of the cohesive energy. Fig. 1 illus-
trates that to get reliable SED between fcc and bcc for
copper the potential range should be extended into the
big circle (corresponding to some tolerable error bound).
Only to that region (and beyond) does the universal bind-
ing energy relation (UBER) of Rose et al. 2 decrease to
the magnitude of the SED between fcc and bcc lattices.
For alloys the problem will be more complex. There are
some superstructures with very large unit cells. To cal-
culate the heats of formation for these competing struc-
tures needs very long-range potentials. For calculating
the elastic constants, the potential range is also impor-
tant. For example, the predicted shear modulus C ′ of bcc
structure is zero if a nearest-neighbor potential is used,
so a potential range beyond nearest-neighbor distance
is required for bcc structure. Long-range potentials are
also needed for phonon calculation. In the case that the

unit cell is very large, the potential range should be long
enough so that all the atoms in the unit cell can interact
with each other hence the force constants linking them
do not vanish.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0
Lattice constant (angstrom)

-4.0

-2.0

0.0

2.0

4.0

C
oh

es
iv

e 
en

er
gy

 (
eV

)

FIG. 1. Schematical illustration for the need of long-range
potential. The filled cirlces denote the radial distribution of
the atom shells of fcc copper. The curve is the UBER for
copper. The big circle shows the region to which the potential
range should be extended.

To determine interatomic potentials, one has to as-
sume some functional forms for them (such as exponen-
tial and power-law functions), and the potential param-
eters are fitted from experimental properties. The pa-
rameters can be exactly solved within Johnson’s nearest-
neighbor model with exponential potentials3 and Sutton
and Chen’s long-range model with inverse power-law po-
tentials4. Of course, Johnson’s model is not applicable
in many cases because it is too short-range. On the
other hand, as inverse power-laws, Sutton and Chen’s
potentials converge, however, slower than the exponen-
tials (this will be explained later). In molecular dynamics
simulation, slow convergence of the potentials will result
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in the increasing of the time needed to make the neighbor
list. In a long-range model that does not employ power-
law functions, the conventional way to obtain the pa-
rameters is the numerical method of least-square fitting.
The disadvantage of the numerical fitting method is that
it is a little arbitary. Different authors may obtain differ-
ent parameters, or the same author may obtain different
parameters at different time, while a small variation of
the parameters may lead to change of the long-range tail
remarkable for the SED. This makes the conventional fit-
ting method problematical when the fitted potentials are
to be used to calculate something like phase stability and
stacking fault energy. These properties are quite sensi-
tive to the long-range tail which is, however, not very
refined in the conventional fitting method.

In this paper, we present a systematical method of
obtaining analytical long-range potentials with satisfac-
tory convergence based on the lattice-inversion method
(LIM). The LIM was first used by Carlsson, Gelatt and
Ehrenreich (CGE) to get parameter-free pairwise poten-
tial from ab initio total energy calculation.5 Recently, the
inversion formula of CGE was recasted into a concise for-
mulism by Chen based on the Möbius inversion transform
in number theory 6,7,8. Nevertheless, the original two-
body inversion scheme has, of course, some problems be-
cause of the lack of many-body contribution. Therefore,
some many-body inversion schemes based on the N -body
potential9 and angularly-dependent Stillinger-Weber po-
tential10 were developed by Xie and Chen11 and Bazant
and Kaxiras 12, respectively.

This paper is organized as follows. In Section II, we
briefly introduce the LIM. In Section III, we present the
lattice-inversion model for the embedded-atom method
(EAM)13. In Section IV, we discuss the parametrization
procedure in detail. In Section V, we present some cal-
culated results. The paper is concluded in Section VI.

II. THE LATTICE-INVERSION METHOD

The LIM can be traced to an early work by CGE.5 The
idea is to invert a function from its lattice sum which is
sometimes easier to be obtained. For example, in the
pair potential model (PPM), the cohesive energy can be
written as the summation of the pair potential over the
crystal lattice

E(R1) = (1/2)

∞∑

m=1

wmV (pmR1) (1)

where wm is the number of atoms on the m-th shell, pm
is the ratio of the radius of the m-th shell to the nearest-
neighbor distance. The cohesive energy as a function of
lattice spacing can be calculated by using first-principles
method, or simply taken as the UBER. Then as CGE
suggested, one can use the following inversion formula to
obtain the so-called ab initio pair potential V (r)

V (r) =
2

w1
E

(
r

p1

)
−
∞∑

m=2

2

w1

wm
2

2

w1
E

(
pmr

p2
1

)

+

∞∑

m,n=2

2

w1

wm
2

2

w1

wn
w1

2

w1
E

(
pmpnr

p3
1

)
− · · · (2)

The multiple summations make the ordering for the in-
version coefficients not obvious. It was not until recently
that Chen put forward his elegant Möbius inversion for-
mula on three-dimensional crystals.8 The Chen-Möbius
inversion formula is very simple

V (r) = 2

∞∑

m=1

µmE(pmr) (3)

The Möbius coefficients µm can be determined by

µ1 = 1/w1

µm = −(1/w1)
∑

pk|pm ,k 6=m
µkwl (m ≥ 2) (4)

where l is the natural number which satisfies pl = pm/pk.
Obviously, Chen’s formula requires the set P = {pm|m ∈
N} should be a multiplication-close one, i.e., given two
arbitrary elements pi,pj ∈ P, their product pipj should
be in P too. Actually the crystal lattices sc, bcc, fcc, hcp
and diamond etc. do not automatically satisfy this re-
quirement. Therefore, before applying the Chen-Möbius
formula we have to at first construct a close set Q,
which should include at least part of the elements in the
orginal set P. This task is easily done for sc and fcc:

For them the set P is simply {
√
i2 + j2 + k2R1|i, j, k ∈

Z, i2 + j2 + k2 6= 0}, we can construct a new set
Q={√nR1|n ∈ N}, which covers P. The numbers of
atoms on the shell

√
nR1 vanish if n cannot be written

as the square sum of three natural numbers i2 + j2 + k2.
But for other lattices such as bcc, it is difficult to find
a natural close set which covers all the elements in
the set P= {

√
i2 + j2 + k2a|i, j, k ∈ Z, i2 + j2 + k2 6=

0} ∪
√

(i+ 1/2)2 + (j + 1/2)2 + (k + 1/2)2a|i, j, k ∈ Z},
where a is the lattice constant. However, for the present
physical problem we do not have to construct a close set
covering all the elements. Note that the expansion of
eq.(1) should be convergent. That is to say, usually we
can truncate at some shell, say, the M -th shell, beyond
which the function V (r) has become small enough to be
neglected. So we can approximate eq.(1) by E(R1) =∑M

m=1 wmV (pmR1), then we have a set with M elements
P= {p1, p2, · · · , pM}. We can easily generate a close set

Q which covers P: Q= {pk1

1 p
k2

2 · · ·pkMM |k1, k2, · · · , kM =
0, 1, 2, 3, · · ·, k1 + k2 + · · ·+ kM 6= 0}. Re-ordering this
close set from the smallest element to the biggest one, we
get the set as Q= {p′m|p

′
m < p

′
m+1,m ∈ N}. Then we

can rewrite eq.(1) as E(R1) = (1/2)
∑∞
n=1 w

′
nV (p

′
nR1),

where w
′
n = wm when p

′
n = pm and vanishes when p

′
n
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equals none of the elements in P. The inversion is sim-
ply the same as eq.(3), with the Möbius coefficients µ

′
n

determined from w
′
n.

In the one-dimensional case, eq.(3) becomes the
number-theoretic Möbius inversion formula

V (r) =

∞∑

n=1

µ(n)E(nr) (5)

where µ(n) is the number-theoretic Möbius function.
This physical mapping (Fig.2) was first dicovered by
Chen6.

V(2r)

V(r)

V(3r)

r
V(4r)

FIG. 2. A physical mapping of the Möbius inversion theo-
rem in arithmetic number theory.

Very recently, Bazant and Kaxiras have presented
a novel scheme to obtain effective angularly-dependent
many-body potentials for covalent materials by inversion
of cohesive energy curves from many configurations12.
Their method, together with our previous work for the
EAM11, have shown the potentiality of the LIM as a
shortcut to obtain the effective interatomic potentials.

III. THE LATTICE-INVERSION
EMBEDDED-ATOM MODEL

Generally the physical properties we use to fit the po-
tential parameters are related more closely to the lat-
tice sums than to the individual potential function them-
sleves. Given the lattice sums of the pair potential V (r)
and electron density f(r)

∑

i

f(Ri) = ρ(R1) (6)

(1/2)
∑

i

V (Ri) = Φ(R1) (7)

We can easily rewrite the formulas of the bulk modulus
and Voigt shear modulus

B =
1

18Ω
{
∑

i

R2
i [V

′′
eff(Ri)−

1

Ri
V
′
eff(Ri)]

+2F
′′
(ρe)[

∑

i

Rif
′
(Ri)]

2} (8)

G =
1

30Ω

∑

i

R2
i [V

′′
eff(Ri)−

1

Ri
V
′
eff(Ri)] (9)

as

B=
1

9Ω
{R2

1[Φ
′′
(R1) + F

′
(ρ)ρ

′′
(R1)]

−R1[Φ
′
(R1) + F

′
(ρ)ρ

′
(R1)] + F

′′
(ρ)R2

1[ρ
′
(R1)]2} (10)

G=
1

15Ω
{R2

1[Φ
′′
(R1) + F

′
(ρ)ρ

′′
(R1)]

−R1[Φ
′
(R1) + F

′
(ρ)ρ

′
(R1)]} (11)

where Ω is the atomic volume, Veff(r) is the effective pair

potential Veff(r) = V (r) + 2F
′
(ρ)f(r). And for trans-

forming eqs.(8) and (9) to the effective nearest neighbor
forms of eqs.(10) and (11), the following relationship has
been used: if there is a function h(r) whose lattice sum
is another function H(R1), then

∑

i

Rni h
(n)(Ri) = Rn1H

(n)(R1) (12)

Thus we have an equation related to the Cauchy pressure

9BΩ − 15GΩ = F
′′
(ρ)R2

1[ρ
′
(R1)]2 (13)

On the other hand, the vacancy-formation energy

Ev = −Φ +
∑

i

[F (ρ− f(Ri))− F (ρ)] +Erelax (14)

can be approximately written as the lattice sum of the
effective pair potential Ev = (1/2)

∑
i Veff(Ri), since the

numbers of atoms on the shells are much greater than
1, and the negative relaxation energy further reduces the
error. This approximation has been checked by a simple
relaxation calculation in which only the nearest neighbor
atoms around the vacancy site are allowed to relax. It is
found that in the case of copper the calculated unrelaxed
vacancy-formation energy is 1.34 eV, while the relaxed
result is 1.31 eV, closer to the experimental value. Hence,
the difference between the vacancy-formation energy and
the sublimation energy can be written as

Es − Ev = F
′
(ρ)ρ(R1) − F [ρ(R1)] (15)

We can see from eqs.(13) and (15) that the nonlinearity
of the embedding function reflects the many-body nature
of the embedded-atom potential. If F (ρ) is a linear func-
tion with respect to ρ (corresponding to a PPM), then
we have 3B = 5G (the Cauchy relation) and Es = Ev,
which are the two well-known drawbacks of the PPM.

The nearest-neighbor distance of the equilibrium lat-
tice can be obtained by minimizing the total binding en-
ergy

Φ
′
(R1e) + F

′
(ρe)ρ

′
(R1e) = 0 (16)

Another condition we need to consider is the normali-
sation for the electron density. Integrating both sides of
eq.(7) with respect to R1

∑

m

wm
p3
m

∫ ∞

0

f(pmR1)4π(pmR1)2d(pmR1)

=

∫ ∞

0

4πR2
1ρ(R1)dR1 (17)
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Note that the electron density f(r) should be normalized∫∞
0

4πr2f(r)dr = N (where N is the number of elec-
trons), we obtain

∫ ∞

0

4πR2
1ρ(R1)dR1 = S(3)N (18)

where S(3) =
∑
m wm/p

3
m. In alloy case, the parameter

N should be determined by considering the charge trans-
fer. This consideration is based on empirical Miedema’s
equation which well decribes the heats formation of bi-
nary alloys. The attractive term in Miedema’s equation is
re-interpreted by Pettifor as the contribution of the elec-
tronegativity difference, which is related to the charge
transfer.14

The embedding function in the present model is as-
sumed to be a power-law one

F (ρ) = −Aρ1/λ (19)

λ = 1 corresponds to the PPM, while λ = 2 corresponds
to the N -body potential of Finnis and Sinclair.9 In the
following section we shall show that with appropriate
functional forms for the electron density and pair po-
tential, this embedding function will produce exactly the
UBER, and the parameter λ is insensitive to the func-
tional forms of the electron density and pair potential.

The electron density and pair potential in the present
model are structure-dependent as we can see from their
inverted formulas

f(r) = µ1ρ(p1r) + µ2ρ(p2r) + µ3ρ(p3r) + · · · (20)

V (r) = 2µ1Φ(p1r) + 2µ2Φ(p2r) + 2µ3Φ(p3r) + · · · (21)

The functions of f(r) and V (r) are the linear combina-
tions of their lattice-summed functions ρ(R) and Φ(R),
while the structural dependence is included in the Möbius
inversion coefficients µm and the radius ratio pm. Differ-
ent kinds of functions for ρ(R) and Φ(R) will be used to
control the potential convergence, as shown in the next
section.

IV. PARAMETRIZATION

A. ρ(R) and Φ(R) are exponential functions

It has been found by Banerjea and Smith using the
effective-medium theory that the off-site electron density
exhibits a universal relationship with respect to lattice
spacing: ρ∗ = exp(−a∗), which was used to explain the
physical origin of the UBER within the framework of
local density approximation15. Based on the results of
Hartree-Fock calculations, Mei, Davenport and Fernando
also pointed out that the lattice sum of the electron den-
sity as a function of lattice constant shows exponential
behaviour.16 Therefore, it is plausible to take ρ(R) as an
exponential

ρ(R1) = ρe exp

[
−α

(
R1

R1e
− 1

)]
(22)

As a short comment, we would like to point out that when
the authors of Ref. 16 came to the above equation they

just used a complex function as f(r)=fe
∑k

l=0 cl(R1e/r)
l

to fit it. One can see in the present method we do not
have to fit. The individual function is accurately given
by eq.(20).

The repulsive energy is often assumed to have a rela-
tion with the bond energy (i.e. the embedding energy
in this case) like Urep(R) ∝ [Ubond(R)]γ , where γ is 2
according to the so-called Wolfsberg-Helmholtz approxi-
mation. 17 Therefore, we assume Φ(R) is also an expo-
nential function

Φ(R1) = Φe exp

[
−β
(
R1

R1e
− 1

)]
(23)

In our method the parameters can be exactly solved as
if the model were a nearest neighbor one. The solutions
are

λ =
5GEs
3BEv

(24)

α =

√
λ(9ΩB − 15ΩG)

Es −Ev
(25)

β =
Es − Ev
Es − λEv

α (26)

Φe =
Es − λEv
λ− 1

(27)

ρe =
NS(3)α3e−α

8πR3
1e

(28)

A =
λ

λ− 1
(Es − Ev)ρ−1/λ

e (29)

The binding energy equation is a Morse-like function

Ecoh(R1) = Φeexp

[
−β
(
R1

R1e
− 1

)]

−Aρ1/λ
e exp

[
−α
λ

(
R1

R1e
− 1

)]
(30)

Different from other equations of state, eq.(30) includes
the inputs of the Cauchy pressure and vacancy-formation
energy.

B. ρ(R) and Φ(R) are gaussian functions

It has been shown that in the present method all
the parameters are analytically determined by the input
physical properties, which are only for the equilibrium
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lattice. The potential convergence depends on the func-
tional forms we take for ρ(R) and Φ(R). The gaussian
function is an alternative choice

ρ(R1) = ρe exp

[
−α

[(
R1

R1e

)2

− 1

]]
(31)

Φ(R1) = Φe exp

[
−β
[(

R1

R1e

)2

− 1

]]
(32)

The solutions are the same with the above subsection
except

α =
1

2

√
λ(9ΩB − 15ΩG)

Es − Ev
(33)

ρe =

(
α

πR2
1e

)3/2

NS(3)e−α (34)

The binding energy equation is

Ecoh(R1) = Φeexp

[
−β
[(

R1

R1e

)2

− 1

]]

−Aρ1/λ
e exp

[
−α
λ

[(
R1

R1e

)2

− 1

]]
(35)

C. ρ(R) and Φ(R) are modified exponential functions

The electron density may not be a simple exponential
function. As we know it is always a combination of some
Slater orbitals rne−κr . In order to reflect this, we suppose

ρ(R1) = ρe

(
R1

R1e

)n
exp

[
−α

(
R1

R1e
− 1

)]
(36)

The pair potential remains the same as eq.(23). The
solutions of λ are

λ =
1

2

(
1 + λ0 + n

Es −Ev
9BΩ

)

±1

2

[(
1 + λ0 + n

Es − Ev
9BΩ

)2

− 4λ0

(
1 + n

Es − Ev
15GΩ

)]1/2

(37)

where λ0 = 5GEs/3BEv. In this case, we have two solu-
tions. Each of them can exactly reproduce the physical
inputs. This simple example then implies that there may
exist several different attractors leading to different re-
sults when the conventional fitting procedure is used to
search for an approximate solution. This problem may
merit a thorough investigation, and will not be discussed
in the present paper. Note that (Es − Ev)/18BΩ � 1

and (Es−Ev)/15GΩ� 1, if n is taken to be 1, then the
approximate solutions will be λ+ = λ0 and λ− = 1. The
latter solution is just the PPM which is then excluded.
The solutions for the remaining parameters are

α = n+

√
λ(9ΩB − 15ΩG)

Es −Ev
(38)

β =
Es −Ev
Es − λEv

(α− n) (39)

ρe =
NS(3)αn+3e−α

4πR3
1eΓ(n+ 3)

(40)

The expressions for the other two parameter Φe and A
are identical with those presented in the first subsection.

The binding energy equation is

Ecoh(R1) = Φe exp

[
−β
(
R1

R1e
− 1

)]

− Aρ1/λ
e

(
R1

R1e

)n/λ
exp

[
−α
λ

(
R1

R1e
− 1

)]
(41)

When α/λ = β and λ = n, the above equation is just the
UBER

Ecoh(R1) =
Φe

1− β

[
1 + β

(
R1

R1e
− 1

)]

× exp

[
−β
(
R1

R1e
− 1

)]
(42)

From the above subsections, one can find two points
to support the power-law embedding function. The first

point is that this embedding function (given by Aρ
1/λ
e

and λ) is independent on the given funcional forms of
the electron density and pair potential. This physically
underpins the local nature of the embedding function. It
is also true when the pair potential and electron density
take the power-law forms. The second is that the given
binding energy equation is very close (and even identical)
to the UBER. This consistency is necessary for a good
description for the thermal expansion (the anharmonity
effect)18. In some sense, the method may represent an
embedded-atom explanation for the UBER.

If ρ(R1) and Φ(R1) take the form of power law the
solutions for the parameters will remain unchanged ex-
cept that ρe cannot be determined since the power-
law function cannot be normalized. However, an al-

ternative parameter ξe= Aρ
1/λ
e can be determined, as

is the case of Sutton-Chen’s potential. The inverted
functions, for example the pair potential, is given as
V (r) = Φe/S(β)(r/R1e)

−β. While in the case of expo-
nential, V (r) < (Φe/12)eβ[exp(r/R1e)]

−β. Since S(β) is
only a little greater than 12 and the paramters Φe, β are
the same in the two cases, the above two functions cross
approximately at the NN distance. Beyond the NN dis-
tance, the exponential potential is smaller and decreases
much faster than the power law.

5



1.0 2.0 3.0 4.0 5.0
r

0.0

0.5

1.0

1.5

2.0

V
(r

) 
(e

V
)

1.0 2.0 3.0 4.0 5.0
r (angstrom)

0.0

0.1

0.2

0.3

0.4

f(
r)

���
�

�Cu
Ag
Au

FIG. 3. The inverted electron densities and pair potentials
(inset) for the noble metals. The unit of f(r) is Å−3.

Fig. 3 shows the typical shapes of the inverted pair
potential and electron density, respectively. One can see
from the figure that the inverted electron densities and
pair potentials decrease rapidly. In our calculation, the
cut-off is placed at about 3ae, where the pair potential
and electron density have been negligible.

V. APPLICATIONS OF THE POTENTIALS

The physical inputs for the present model are listed in
Tab. I. The elastic moduli of Al are from Simmons and
Wang19, those of Ni, Pd, Pt, Cu, Ag and Au are from
Foiles, Baskes and Daws20; Lattice constants and cohe-
sive energies are all from Kittel21; Vacancy-formation en-
ergies for fcc transition metals are from Foiles, Baskes
and Daw20, and that for Al is from Ballufi22. We do not
list the number of electrons since ρe can be incorparated
with A as a parameter it is not used in monoatomic cal-
culations. It is only important in alloy calculations, in
which it descibes the charge transfer effect.

TABLE I. The model inputs ae,Es,Ev, B,G. ae is in Å, Es
and Ev are in eV, B and G are in 1011N/m2.

Element ae Es Ev B G

Ni 3.52 4.44 1.7 1.804 0.95
Pd 3.89 3.89 1.54 1.95 0.54
Pt 3.92 5.84 1.6 2.83 0.65
Cu 3.61 3.49 1.3 1.38 0.55
Ag 4.09 2.95 1.1 1.04 0.34
Au 4.08 3.81 0.9 1.67 0.52
Al 4.05 3.39 0.7 0.76 0.266

A. Structural stabilities

Phase stability is the first test for the long-range po-
tentials. For copper, the EAM result Efcc−bcc (25.8meV)
falls in the middle of the nonrelativistic and semirela-
tivistic ab initio values (-17.7 meV and -48.8 meV) re-
ported by Lu, Wei and Zunger23. The EAM result for
Efcc−diamond equals 1.07 eV, also close to their ab initio
result (1.35 eV) for diamond-like copper with the correc-
tion of nonspherical charge-density inside the muffin-tin
sphere. For all the studied elements, the present model
predicts the fcc structure to be the ground state (see
Tab. II). However, similiar to Sutton and Chen’s po-
tentials4, the EAM result for Efcc−hcp is virtually zero,
so we did not print the binding energy curve for hcp in
Fig.4. This failure is believed to be due to the absence
of the angularly-dependent or higher order moment con-
tributions. It has been pointed out by Ducastelle and
Cyrot-Lackmann that it is mainly the third and fourth
moments that are responsible for the SEDs among bcc,
fcc and hcp candidates.24
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FIG. 4. The predicted phase stability of copper using the
present model.

TABLE II. The predicted structural energy differences for
the fcc metals. The energies are in eV. The numbers in the
parentheses denote the function types used: 1=exponential;
2=gaussian; 3=modified exponential.

Element Efcc − Esc Efcc −Ebcc Efcc −Ediamond

Ni(2) -0.58 -5.31×10−2 -1.36
Pd(1) -0.53 -3.42×10−2 -1.21
Pt(1) -0.62 -4.67×10−2 -1.39
Cu(1) -0.44 -2.58×10−2 -1.07
Ag(1) -0.40 -2.28×10−2 -0.94
Au(1) -0.35 -2.29×10−2 -0.83
Al(3) -0.28 -2.11×10−2 -0.66
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B. Elastic constants and phonon eigenfrequencies

The comparison of the calculated and experimen-
tal data for the elastic constants C11, C12, C44, the
anisotropy ratios C/C ′ (C = C44, C ′ = (C11 − C12)/2),
and the phonon longitudinal and transverse frequencies
γL, γT at the boundary of the Brillouin zone are shown
in Fig. 5. The elastic constants were calculated by exert-
ing the corresponding strain matrices to the lattice. The
vibrational eigenfrequencies are calculated by diagonal-
izing the EAM dynamical matrix25. The experimental
data for the elastic constants of Ni, Pd, Pt, Cu, Ag and
Au are from Foiles, Baskes and Daw20, those for Al are
from Simmons and Wang19. The experimental data for
the phonon eigenfrequencies are from Ref.26. The calcu-
lated results are overall in agreement with the experimen-
tal data. Fig. 6 shows the predicted phonon dispersion
curves for copper along the high symmetry directions are
in excellent agreement with the experimental data.
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FIG. 5. Comparison of calculated and experimental re-
sults for the elastic constants, the longitudinal and transverse
phonon eigenfrequencies at the Brillouin-zone boundary. (a)
C11; (b) C12; (c) C44; (d)γL; (e)γT .

0.0

2.0

4.0

6.0

8.0

P
ho

no
n 

fr
eq

ue
nc

y 
(T

H
z)

Γ ∆ Χ Χ Σ Γ ΛW L

Cu

FIG. 6. Comparison of the theoretical phonon dispersion
curves of Cu (solid lines) with the experimental data (filled
circles) along the high symmetry directions.

It has to be pointed out that when the present
model is applied to the bcc transition metals with low
anisotropic ratios, the calculated elastic constants C ′ and
C44 severely disagree with the experimental data, despite
of that the bulk modulus and the Voigt shear modulus
can be reproduced. This may imply that for the bcc
transition metals the directional bonding is significant.

C. Surface properties

To calculate surface properties, we employ a simulation
box with size 10×10×10 and periodically reproduced in
x,y and half z directions (rather than a slab). For (111)
surface, a periodic boundary condition with rhombic ge-
ometry has been applied. Relaxation is not considered in
the calculation.

The calculated results for the unrelax surface energies
of low index surfaces (100), (110) and (111) are listed in
Tab. III, in comparison with the relaxed results of Foiles
et al.20. The calculated results for the adsorption energies
Ead at different sites (see Fig. 7) and the hopping diffu-
sion barriers Udiff as well as the island formation energies
on the (100) surface are given in Tab. IV. The result of
Udiff for Ag is close to the ab initio results 0.52 eV (LDA)
and 0.45 eV (GGA) reported by Yu and Scheffler28. The
binding energies Ebind of adatom dimers are calculated
to be negative, suggesting that adatoms tend to form is-
lands. For trimers on the (100) surface, the calculated
results disfavor the one dimensional configuration.
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d

a b

c
FIG. 7. Top view of adatoms geometries at (100) sur-

face. (a) The four-fold hollow site (FFHS); (b) The two-fold
bridge site (TFBS); (c) One-dimensional (1D) trimer; (d)
Two-dimensional (2D) trimer.

TABLE III. The calculated surface energies of low index
surfaces. The first row are the present results. The second row
are the theoretical results of Foiles et al.. The experimental
data (average-face values) as well as the theoretical results
are all taken from Ref. 27. The units are erg/cm2.

Surfaces Ni Pd Pt Cu Ag Au Al

γ100 1702 1318 1485 1411 782 891 614
1580 1370 1650 1280 705 918 —–

γ110 1856 1451 1650 1533 855 945 680
1730 1490 1750 1400 770 980 —–

γ111 1595 1181 1286 1320 714 768 550
1450 1220 1440 1170 620 790 —–

exp. 2380 2000 2490 1790 1240 1500 —–

TABLE IV. The calculated adatom adsorption and island
formation properties on (100) surface. The units are eV.

Properties Ni Pd Pt Cu Ag Au Al

Ead to FFHS -3.59 -3.02 -4.61 -2.77 -2.20 -3.14 -2.85
Ead to TFBS -2.52 -2.48 -4.10 -2.21 -1.76 -2.93 -2.49
Udiff 1.07 0.54 0.51 0.56 0.44 0.21 0.36
Ebind(dimer) -0.42 -0.50 -0.71 -0.37 -0.35 -0.49 -0.29
Ebind(1D trimer) -0.82 -0.97 -1.35 -0.71 -0.67 -0.94 -0.55
Ebind(2D trimer) -0.90 -1.02 -1.39 -0.78 -0.72 -0.97 -0.58

D. Molecular dynamics

In the above subsections the calculations are static. In
this subsection, the potentials are tested in the constant-
volume-temperature molecular dynamics (NVT-MD)
simulation for melting processes for Cu and Pt. The sim-
ulation box contains 500 atoms. Gear predictor-corrector
algorithm and Verlet neighbor list are applied. The time
step is one femtosecond (10−15 s). The ensemble average
of the origin-independent translational order parameter
is calculated after equilibration of at least 5000 steps

σ2 =

〈[
1

N

∑

i

cos (K ·Ri)

]2

+

[
1

N

∑

i

sin (K ·Ri)

]2〉

(43)

where N is the number of atoms in the box, K is the
reciprocal basis vector for the initial structure (for ex-
ample, K = 2π/a(−1, 1,−1) for fcc lattice), and Ri are
the position vectors for the atoms. Fig. 8 shows the or-
der paramters as a function of temperature for Cu and
Pt. In comparison with experimental data, the melting
points are underestimated by an amount of 200-300 K.
Our result of Cu is worse than that of Foiles and Adams29

(1340 K), but that of Pt is better than theirs (1480 K).
Fig.9 shows the pair distribution functions g(r) of Cu at
different temperatures.
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FIG. 8. Translational order parameters versus tempera-
ture for Cu and Pt. The experimental melting points for
Cu(1358K) and Pt(2045K) are denoted by the two vertical
solid lines.
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We also simulated the melting of a slab. The size of
the simulation box is 5×5×20, while that of the slab is
5×5×10 (containing 21 atomic layers or 1050 atoms).
The slab is placed at the center of the simulation box,
which is large enough to ensure that the slab does not
interact with its images. The atomic configuration is de-
scribed by the density profile N (z) along the direction
perpendicular to the slab. N (z) is obtained by averag-
ing over 1000 steps after running 20000 steps. Surface
premelting is observed at 900 K, and the liquid fronts
propagate inward when the temperature rises (920K). At
950K the slab completely melts.
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FIG. 10. Density profiles along the direction perpendicular
to the slab of Cu at different temperatures.

The simulation results suggest that melting is a
surface-initiated process. It would be interesting to in-
vestigate the temperature dependence of the depth of the
melten layer. On the other hand, does the solidification
process also begin from the surface, or from the core?

VI. CONCLUDING REMARKS

We have presented a systematical method of obtain-
ing long-range embedded-atom potentials. The model
parameters can be obtained explicitly from six physical
inputs and the individual potentials are inverted from the
analytical functions of lattice sums thus arbitary fitting
can be avoided. It is shown that the model is able to
produce satisfactory results of elastic constants, phonon
eigenfrequencies, phase stabilities, surface properties and
melting points for the fcc transition metals. The poten-
tials are suitable for computer simulation because of their
rapid convergence.

Deriving interatomic potentials from ab initio calcula-
tions when the experimental data are not available has
become an abvious trend in the world of material sim-
ulation.30 The reason has been explained very well in a
recent paper by Payne et al.31. In this regard, the present
method (as well as the method of Bazant and Kaxiras12)
may represent an idea of bridging the gap between mate-
rial theory and electronic structure theory by the method
of inverting ab initio EAM potentials (or angularly de-
pendent many-body potentials) from first-principles cal-
culations. The ab initio binding energy curve can be de-
composed into repulsive and attractive parts, represent-
ing the contributions of the pair potential and embedding
energy respectively. By using our method, the ab initio
EAM potentials can be obtained by inverting from the
corresponding parts.

The present model is easy to be generalized to the al-
loy case by assuming that the pair potential between
unlike atoms is given by Johnson’s formula Vab(r) =
(1/2){[fb(r)/fa(r)]Vaa(r) + [fa(r)/fb(r)]Vbb(r)}. 32 Fi-
nally it should be pointed out that the present model
fails in predicting the bcc transition metals. Modifying
the functional forms of ρ, Φ and F (ρ) does not help much
to solve this difficulty.
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