
A Visual Approach to Nanotechnology Education*

CHARLES XIE
The Advanced Educational Modeling Laboratory, The Concord Consortium, Concord, MA 01742, USA. E-mail: qxie@concord.org

HEE-SUN LEE
Department of Physics, University of California Santa Cruz, Santa Cruz, CA 95064, USA. E-mail: hlee58@ucsc.edu

This paper presents a systematic visual approach to teaching concepts in nanotechnology. Five types of mathematical

models are used to generate visual, interactive simulations that provide a powerful software environment for virtual

experimentation. The nanotechnology content areas covered by this approach are discussed. A variety of instructional

strategies for effective use of these simulations are discussed. Preliminary results from a pilot study at the college level

demonstrated the potential of this approach for improving nanotechnology learning.
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1. Introduction

Nanotechnology is a rapidly growing field. Tech-

nologies that are ‘hot’ today may fade away tomor-

row. But the foundational concepts are not as

volatile. This paper focuses on teaching basic con-

cepts of nanotechnology, which take root in physi-

cal and biological sciences and expand into exciting

visions such as atomically precise manufacturing
[1, 2].

A solid foundation is critically important to

students, who must be prepared with universally

applicable knowledge and skills needed to under-

stand various technologies and applications that are

constantly being proposed and invented. Dissemi-

nating the grand visions of nanotechnology to

students is equally important, as among them
there are future generations of scientists, engineers,

and technicians who will help realize and advance

the visions.

Teaching nanotechnology concepts is not a trivial

task, however. A large part of the foundation for

nanotechnology is the basic science about electrons,

atoms, and molecules. None of these microscopic

objects behave like anything students see and
experience in everyday life. A deep understanding

of nanoscience builds upon thermodynamics, sta-

tistical mechanics, and quantum mechanics [3].

These subjects often pose learning difficulties to

students.

This paper presents a visual approach to tackle

these issues for a broad audience inK-16 education.

Many nanotechnology experiments are still infea-
sible to carry out in the classroom. But they can be

simulated on the computer. Revolutionary ideas

such as nanomachines and nanofactories are some-

thing that does not exist yet. But they can be

conceived and simulated, too, based on known

scientific principles. In fact, this is the approach

taken by Drexler in his foundational book that
popularized the concept of nanotechnology [4]. In

the book, he predictedmolecularmachines based on

computer simulation. Unlike his theoretical analy-

sis that only a limited number of students can

follow, the visual simulations of hypothetical nano-

machines described in this paper present those ideas

in a more accessible form.

This work is based on theMolecular Workbench

(MW) software (http://mw.concord.org) developed

by the first author [5]. The software simulates the

dynamics of electrons, atoms, and molecules that

dominate the nanoscopic world. As the computa-

tional engines of MW grew out of contemporary

molecular modeling research [6], MW simulations

generate excellent digital representations of nanos-

cale phenomena. With its graphical user interfaces,
the MW environment provides a virtual laboratory

in which simulated nanoscale processes can be

examined and manipulated on the computer

screen in real time. This simulation capacity offers

a powerfulmeans of experiential learning in the field

of nanotechnology that has even been applied at the

elementary school level [7]. This paper will present

the five mathematical models for modeling nano-
systems inMWand summarize the nanotechnology

content that can be taught using them. Various

instructional strategies for using simulations in

different settings will be discussed and compared.

Preliminary data based on a pilot study at the

college level will also be presented.

2. Mathematical models for nanosystems

An early visionary of nanotechnology [8], physicist
Richard Feynman once said, ‘If, in some cataclysm,

all of scientific knowledge were to be destroyed, and

only one sentence passed on to the next generations

of creatures, what statement would contain the

* Accepted 26 May 2012.1006

International Journal of Engineering Education Vol. 28, No. 5, pp. 1006–1018, 2012 0949-149X/91 $3.00+0.00
Printed in Great Britain # 2012 TEMPUS Publications.



most information in the fewest words? I believe it is

the atomic hypothesis . . . that all things are made of

atoms—little particles that move around in perpe-

tual motion, attracting each other when they are a

little distance apart, but repelling upon being

squeezed into one another. In that one sentence,
you will see, there is an enormous amount of

information about the world, if just a little imagina-

tion and thinking are applied’ [9].

The enormous amount of information in Feyn-

man’s one sentence is precisely what molecular

dynamics delivers. Classical molecular dynamics is

a computational method that simulates the move-

ments of atoms and molecules by numerically sol-
ving Newton’s equation of motion according to

their interactions [10]. With interactive computer

graphics that visualizes and controls molecular

dynamics and provides an assistive imagination

and thinking tool, Feynman’s insight can be

shared among students.

Four types of 2D or 3D molecular dynamics

models are available in MW for simulating nano-
systems at different levels of details, as briefly

discussed below.

2.1 The all-atom molecular dynamics

The all-atom molecular dynamics models every

single atom as an independent particle that interacts

with one another through the van der Waals force

and electrostatic force, and every single molecule as

a group of atoms that are connected through bond-

stretching, angle-bending, and dihedral torsion

forces that approximate the effect of covalent bond-
ing [6]. This model is needed when an accurate

description of the chemical structure of a nanosys-

tem is required. For example, the simulations of

fullerenes such as carbon nanotubes (Fig. 1), bucky-

balls, and graphenes generally require this level of

details.

2.2 The coarse-grained molecular dynamics

Large nanosystems such as those commonly

encountered in molecular biology often involve a
tremendous amount of atoms and bonds. All-atom

molecular simulations of large nanosystems on a

typical computer take too long to be practical for

student exploration—the force calculations will be

too time-consuming for a simulation to produce

enough frames per second to render a smooth

animation. Furthermore, two current trends in

educational computing prompted us to look for
alternative solutions that do not rely on super-

computing to come to schools. First, with Moore’s

Law approaching the limit, traditional desktop

computers in schools are not expected to get much

faster any time soon. Second, more schools are

adopting tablets that are actually powered by down-

graded central processing units.

Coarse-graining provides a possible workaround

for the problem. A coarse-grained model greatly
reduces the number of degrees of freedom of a

system by keeping the most important features

and removing the relatively trivial details [11, 12].

Without compromising the qualitative understand-

ing of the idea, a coarse-grained simulation that

models large molecules with as few particles

(‘beads’) as possible runs much faster than that for

the same system in the all-atom representation.
Figure 2 gives an example of how a highly

simplified model can be used to illustrate the main

idea of translation from RNA code to a protein.

Because of the dramatic simplification, this 2D

model can run in real time, permitting students to

mutate the RNA code and see how a different

protein is synthesized by this molecular machinery.

2.3 The Gay-Berne molecular dynamics

Most coarse-grained models use spherical particles

to represent groups of atoms. However, individual

spherical particles do not have a rotational degree of
freedom and, therefore, cannot show structural

transitions in molecular orientation typically

observed in mesophases (intermediate states

between liquid and solid). The Gay-Berne potential

[13] and its extensions [14, 15] provide a coarse-

grained model based on elliptical particles. The

potential can be used to approximate linear poly-

mers and their interactions when their internal
structures are adequately rigid and their intramole-

cular forces donot have a significant contribution to

the overall assembly dynamics (the upper image in

Fig. 3). The potential has been widely used to
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Fig. 1. An all-atom molecular dynamics simulation of motion of
methane molecules moving through a carbon nanotube.



simulate liquid crystals and cell membranes. It is

capable of showing transitions among nematic,

discotic nematic, and biaxial nematic phases [14].

By adding point charges and dipole moments [15],
elliptical particles can self-assemble into fairly com-

plex phases and patterns (the lower image in Fig. 3).

2.4 The soft-body dynamics for biomolecules

Illustrations in molecular biology commonly use

objects of arbitrary shapes to represent macromo-

lecules. An important objective of our work is to

transform these static pictures into interactive simu-

lations that students can not only view but also

manipulate.

Most biological macromolecules are soft—they
vibrate, react, deform, fold, and assemble. In many

cases, it is primarily the molecular surfaces that are

important in affecting the intermolecular interac-

tions and dynamics.

Soft body dynamics [16] in MWmodels a flexible

molecular surface as a network of particles con-

nected by elastic constraints. These ‘springs’ main-

tain the distances between two neighboring
particles, the angles among three adjacent particles,

and the dihedral angles linking four adjoining par-

ticles. For 2D models, these discrete particles are

placed along the edge of an object (the lower image

in Fig. 4). For 3Dmodels, these particles are placed

on the surface mesh of an object. Physical interac-

tions among soft bodies are enabled by giving these

particles properties such as molecular mass, a stiff
repulsive core, an attractive force, or an electric

charge. This allows many interesting macromolecu-

lar phenomena to bemodeled, such as self-assembly

[7], docking, molecular recognition, and so on.

2.5 Quantum dynamics

The above mathematical models are based on

classical molecular dynamics, which cannot model

quantum effects that are significant in the nanoscale

world. Quantum mechanics is responsible for novel

properties of nanostructures such as nanoparticles,

quantum dots, and graphenes. As the nanotechnol-
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Fig. 2. A coarse-grained dynamics simulation of translation (making proteins from
messengerRNA).Each amino acid,RNAbase, andRNAbackbone are represented by
a particle. The amino acids randomly bounce into the ribosome site and the one that
matches the current RNA triplet will be attached to the growing polypeptide. The
solvent is not explicitly modeled.

Fig. 3.TheGay-Berne potential provides another coarse-grained
model. The ‘þ=�’ signs represent point charges, whereas the
arrows electrical dipole moments.



ogy pioneer Donald M. Eigler (whose landmark

experiment in 1989 proved the feasibility of atom-

ically precise manufacturing for the first time) put,

‘we become quantum mechanics—engineering and

exploring the properties of quantum states. We are

paving the way for the future nanotechnicians’ [17].
As supplements to the molecular dynamics

models, we have built 1D and 2D quantum

mechanics simulation engines for MW. These

engines are based on efficient finite-difference

time-domain algorithms for solving the time-depen-

dent Schrödinger equation [18]. Fig. 5 shows a 2D

simulation of quantum waves contained in a circle

with a finite barrier height. The dimmer waves
outside the container show the leakage due to

quantum tunneling through the barrier.

3. Teaching nanotechnology using visual
simulations

The visual simulations powered by the above five

mathematical models cover a wide scope of nano-

technology content. It is impossible to present all of

them in this paper. The following subsections will

showcase a few selected topics in which the visual

approach demonstrates its unique strength.

3.1 The basic science about electrons, atoms, and

molecules

Fundamental concepts such as atomic structure,

chemical bonding, interatomic interactions, and so

on are the building blocks of nanoscience and

nanotechnology. The visual quantum mechanics

and molecular dynamics simulations in MW, to

some extent, serve as a set of virtual atomic micro-
scopes for viewing into the nanoscopic world and

exploring these concepts.

For example, the interactions among electrons

and nuclei determine the chemical properties of

atoms andmolecules. It is the gain, loss, and sharing

of electrons that governs all chemical reactions. A

chemical bond is created when two or more atoms

share their electrons. The distribution of electrons in
atoms and molecules affects how they interact and

form various structures and states. Understanding

the properties of electrons is a key to understanding

chemistry. A quantum mechanical simulation in

MW presents a ‘reaction chamber’ in which stu-

dents can control the electron dynamics and ‘design’

the products of a simple chemical reaction (Fig. 6).

This simulation uses the Imaginary Time Propaga-
tion method for solving the Schrödinger equation

[19] to achieve the visual effect that the electron

cloud automatically and dynamically seeks the

ground state for the configuration the user creates

by dragging the mouse.
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Fig. 4.Themass-springmodel is used to discretize 2D soft bodies
(the angular constraints are not shown). Given physical proper-
ties, the self-assembly of these soft bodies can be simulated.

Fig. 5. Quantum dynamics supplements molecular dynamics to
provide visualizations for quantum concepts. The image shows a
snapshot of the quantum wave in a curricular container with a
finite barrier height. The wave is colored by its phase.



3.2 Thermodynamics and statistical mechanics

Thermodynamic effects are inevitable in nanosys-

tems at finite temperature. One of the problems they

cause is the positional uncertainty of atoms result-

ing from constant thermal fluctuations. Therefore,

random thermal motion must be considered while

engineering nanosystems.
Statistical mechanics studies the thermodynamic

properties of materials based on the properties of

their constituent particles and the interactions

among them. Molecular dynamics provides a

powerful tool for teaching the ideas through inter-

active visualizations.

For instance, students have long been taught that

temperature is defined as the average kinetic energy
of the particles in the system. But they are rarely

askedwhy that is a good definition. The explanation

lies deeply in the heart of statistical mechanics. Fig.

7 shows two molecular dynamics simulations we

have designed to visualize this question. The first

simulation illustrates that different chemical com-

ponents of an equilibrium system have identical

average kinetic energy (Fig. 7a). The second illus-

trates that the average kinetic energy is approxi-
mately the same everywhere for any subset of

particles in a container that has reached thermal

equilibrium (Fig. 7b). It is the agreement of these

statistical properties of average kinetic energy with

what we feel about temperature at the macroscopic

level that warrants the statistical mechanics defini-

tion of temperature. These insights, which are

probably not easy to convey without resorting to
high level mathematics, can now be delivered

through visual simulations such as those shown in

Fig. 7.

3.3 Nanoelectronics

Nanoelectronics is an important branch of nano-

technology that holds the promise of making even

morepowerful computers in the future. The studyof
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Fig. 6. This interactive simulation allows students to discover possible states of a 2D
quantum system. Because the quantum mechanics calculation is done in real time, the
shape of the electron cloud (represented by the haze) dynamically responds to the user’s
drag-and-drop of the protons (represented by the plus signs). (a) The initial state of two
protons and an electron cloud. (b) The formationof two hydrogen atoms polarizedby each
other, showing the origin of the van der Waals force. (c) The formation of a covalent
hydrogen molecule when the electron cloud overlaps significantly. (d) The formation of a
hydrogen anion and a proton.



transistors is central in nanoelectronics. The junc-

tionfield-effect transistor (JFET) is the simplest type

of field-effect transistor. Electrons flow through a

semiconducting channel between source and drain
terminals. By applying a bias voltage to a gate

terminal, the channel is pinched, so that the electric

current is impeded or switched off completely.

This phenomenon can be simulated using either

the classical dynamics or the quantum dynamics

method available in MW. The classical dynamics

simulation shows the particle view of electron flow

(Fig. 8a), whereas the quantum dynamics simula-
tion presents a wave view of quantum transport

(Fig. 8b). Both views can explain themechanismof a

transistor. But acute readers may notice that in the

quantum simulation there is a weak tunneling

current even if the transistor is in the off state—
something that does not happen in a classical

simulation.

3.4 Virtual nanotechnology experiments and

nanosystem designs

We have developed simulations for teaching scan-

ning tunneling microscopy [20], electrostatic self-

assembly [21], and atomic layer deposition [22].

These simulations can supplement lecture or labora-
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Fig. 7. Two molecular dynamics simulations that show why the average kinetic energy is a good measurement of temperature. (a) This
simulation shows that the average kinetic energies of two different types of particles adequately mixed in an equilibrium system are
statistically identical. (b)This simulation shows that the average kinetic energyof the particles inside the selected rectangle, regardless of its
size and location, is statistically equal to that of all the particles. In both cases, the bar graphs display the average kinetic energies of the
compared sets calculated by the molecular dynamics simulations.

Fig. 8. (a) A classical molecular dynamics simulation of a JFET. The small white dots
represent electrons. (b) A quantum dynamics simulation of a JFET. The electron wave
is colored by its phase. In both simulations, students can adjust the gate voltage to
switch the transistor on (the left images) and off (the right images).



tory with additional opportunities of learning. The

interactivity design of some of these virtual experi-

ments even simulates laboratory procedures. In

technician education, connecting the underlying

scientific principles with laboratory manipulations

is desirable as it helps students develop a deeper
understanding of a procedure or a protocol. The

science knowledge can generally improve their skills

in troubleshooting and quality control.

As pointed out in the Introduction section, nano-

technology education should not just teach funda-

mentals. Perhaps more importantly, it should also

pass the bigger picture of nanotechnology to stu-

dents. Futuristic nanosystems, such as those con-
ceptual nanomachines envisioned in Drexler’s

foundational book [4], can be brought to the class-

room through simulations to provide inspirations.

We have created a collection of fictitious nanoma-

chines such as nanogears and nano conveyor belts

(Fig. 9).Although these hypothetical nanomachines

have not been chemically synthesized, they can still

be used as some kind of serious ‘science fiction’ to
stimulate students’ interest just like Drexler’s

sketches did for scientists.

As MW also empowers users to create simula-

tions, students can be challenged to modify or

invent new nanomachines to do some desired

work. Because it is based on the Newtonian

mechanics, molecular dynamics provides a way to

design mechanosynthesis, in which reactive mole-
cules would be brought together in planned

sequences, positions, and orientations by mechan-

ical forces. This kind of design activities could open

many opportunities of inquiry for students to learn

more deeply and more broadly [23]. Virtual nano-

machine design could one day become an important

activity for learning nanotechnology, equivalent to

today’s popular student activities that engage them
to learn Newtonian mechanics by designing

impressive animations of mechanical systems [24].

4. Instructional strategies using visual
simulations

Interactive, visual simulations are often attractive
presentations to teachers and students [25–30].

However, the attraction in the first impression is

not a guarantee of learning. Research has identified

a problem called ‘deceptive clarity’: While students

overwhelmingly favor visualizations, they may

learn superficially [31]. Complex simulations like

the ones shown in this paper sometimes contain an

enormous amount of fleeting details. Some gui-
dance is needed to realize their teaching potential.

Classroom dynamics, such as teacher-student inter-

action and student-student collaboration [32, 33],

can play a positive role on amplifying the power of

visual simulations. For instance, asking students to

elucidate what they see from visualizations helps

them realize what they do not actually understand

and can spur them to revisit the visualizations to
remedy gaps in their knowledge. A recent study in

education and cognitive development suggests that

explaining plays a key role in learning and general-

ization: When learners explicate, they learn more

effectively and generalize more readily [34].

There are many different ways of using visual

simulations in the classroom. Each has its own

usefulness. A traffic analogy, in which a simulation
is metaphorized as a transportation vehicle, may be

a good agency for explaining them.

4.1 Using simulations to assist lecture

Teachers can use visual simulations in the classroom

to enrich their lecture. A visual simulation can be

projected onto a screen and shown to the whole

class. From this point on, there are two ways of

taking advantage of the simulation:

(1) ‘Students as passengers in a taxi cab’: The
teacher shows students a simulation and tells
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Fig. 9. (a) An internal nanogear that resembles Fig. 1.1 in Drexler’s defining book about nanosystems. The dashed lines show the van der
Waals interactions that facilitate the ‘transmission’mechanism. (b) Twonano conveyor belts that actively sort and transport a certain type
of feedstock molecules, resembling Fig. 13.7a in Drexler’s book. The nanoscale mechanisms in both (a) and (b) are fictitious.



them what the result means at the end. The

teacher’s role is to ‘drive’ students to the desti-

nation set by the learning goal. Students may

remember the ‘destination’ knowledge but less

about the dots along the path that connect to it

because they just passively watch the teacher’s
demonstration of the simulation. This is a

typical use of simulations when the teacher

does not have enough time or the intermediate

details are not important to the lesson.

(2) ‘Students as tourists in a bus’: The teacher

shows students a simulation but makes ‘fre-

quent stops’ to prompt students to notice the

details and think about them. At each pause,
the teacher may ask students to predict what

will happen or explain what they observed.

Students can also suggest an input or change

to the simulation that the teacher will imple-

ment in front of the class. Changing the course

of the simulationmay lead tonewquestions and

new inquiries. In this scenario, the interactions

between the teacher and the students are
mediated by these interaction opportunities

provided by the simulation. In some cases,

this mediation can be used to make a ‘screen-

play’ that scaffolds effective lecture.

4.2 Using simulations as virtual experiments

If enough computers are available and time permits,

students should be given opportunities to interact

with simulations themselves just like in a hands-on

laboratory. In this case, students are encouraged to

explore, but the tension between student autonomy
and their need for guidance needs to be addressed.

Research has shown that guided inquiry can be

more effective than open inquiry [35]. Guided

inquiry uses clear goals, careful scaffolding, ongoing

assessment, and teacher intervention to lead stu-

dents to independent learning. Dynamic visualiza-

tions often require specific guidance regarding

search strategies and targets that will lead to the
construction of a satisfactory mental picture [30].

We recommend two strategies for guided inquiry

using visual simulations:

(1) ‘Students as driverswith aGPSguide’: Students

work with a simulation individually or in

groups under a set of instructions that gradually

lead them to the answers. This scaffolded

approach sets a ‘sandbox’ that constrains stu-

dent exploration within, which allows their

progression to be more tightly linked to the

learning goals. Some flexibility in the instruc-
tional design may allow students to sidetrack,

but they are always guided back to the main

learning route by just-in-time intervention from

the teacher or the intelligent tutor built into the

simulation. In fact, this has been the design

principle for many of the existing learning

modules we developed using MW.

(2) ‘Students as drivers with amap’: Students work

with a simulation tool individually or in pairs.

They are given clear learning goals and pre-
pared with the basic knowledge (just like a map

that gives a rough idea about cities and streets).

But they have to plan their own routes. They

figure out the answers or the solutions and thus

construct their knowledge [36]. They learn from

making mistakes and correcting them, too.

Students will need more time on finding the

paths and probably detouring in the tasks.
There is also a risk that they may not attain

the learning goal. The most constructivist ver-

sion of this approach is to challenge students to

design simulations that answer a question or

solve a problem [37].

5. Results from a pilot study

Although the ideas of nanotechnology have been

infused into many existing courses in science and

engineering [38], nanotechnology is not currently

taught as an independent course in many schools

and colleges. Large-scale educational research dedi-

cated to nanotechnology education is difficult at

present time because a large amount of funding is
typically needed to recruit and train enough num-

bers of teachers and students for such a study to take

place.

We have conducted a small pilot study in an

introductory solid state physics course offered by

the Physics Department at the University of Cali-

fornia, Santa Cruz. The course objectives included

the understanding of fundamental quantum
mechanical principles governing the semiconductor

physics and the understanding of physical principles

behind the building blocks of modern electronic

devices, which are related to nanotechnology and

can be supported by our visual approach. Although

the pilot study focused more on investigating the

effect of visualizations embedded in standalone

curriculum modules than on a particular nanotech-
nology topic, the results may be general enough to

shed light on how nanotechnology education can

benefit from this visual approach.

The solid state physics course consisted of twenty

90-minute long lectures and lasted 10 weeks over a

single quarter. Twenty-two sophomores to seniors

were enrolled in the class. Among these students, 10

%were female. A demographic survey administered
at the beginning of the course indicates uneven prior

course backgrounds among the students: 100% had

taken introductory physics; 74% had taken thermal

physics, 95% had taken introductory modern phy-
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sics, 42% had taken electricity and magnetism, 21%

had taken quantum physics, and 16% had taken

solid state physics.

Due to the fast pace of the course and the vast

amount of materials needed to be covered, the

instructor used three online MWmodules as home-
work assignments so that individual students could

gain more robust understanding of fundamental

concepts related to semiconductor devices. The

three MW modules were Quantum Basics (QB),

Quantum Tunneling (QT), and Semiconductors

(SC). The QB module covers probability waves,

diffraction and interference, tunneling, bound

states, and excited states [39]. The QT module
covers factors that affect tunneling, tunneling leak-

age in computer chips, tunnel injection and release,

and nanopore DNA sequencing [40]. The SC

module covers thermal excitation, intrinsic and

doped semiconductors, electron holes, P-N junc-

tions, and the energy band theory [41]. The instruc-

tional design of the three modules was based on the

‘students-as-drivers-with-a-GPS-guide’ approach.
All the core concepts are delivered through one or

more visual, interactive simulations that allow stu-

dents to explore the relationships among properties

of various quantum and solid state systems. Each

module consists of several inquiry-based investiga-

tions in which students experiment with simulations

to answer questions addressing the core concepts.

Students’ answers to the prompts embedded in the
modules are collected through the Internet. Table 1

lists the number of visualizations, the number of

investigations embedded, the number of prompts,

and the implemented time during the course in the

pilot study.

In order to investigate the impact of these mod-

ules on student learning, a pre/post research design

was applied. We administered an identical paper-
and-pencil test in the first and the last class of the

course in which the three MWmodules were imple-

mented as homework assignments. The test con-

sisted of 12 multiple choice items followed by open-

ended items that asked students to explain their

multiple-choice answers. The items addressed

basic concepts related to quantum mechanics (e.g.,

tunneling, wave functions, and electron behavior)
and solid state physics (e.g., metals, semiconduc-

tors, transistors, andP-N junctions). Since the study

lacked a control group, we used an indicator of

fidelity of implementation that can reflect the

amount of students’ cognitive engagement with

the three MW modules [42]. The impact of the

intervention on student learning outcome can be
strengthened if students with higher fidelity of

implementation change from pretest to posttest to

a greater extent than those with lower fidelity of

implementation [43, 44]. In this study, we used

student answers to all of the prompts embedded in

the three MW modules to create an indicator of

fidelity of implementation. Nineteen students took

the pretest while 15 took the posttest. The QB
module was completed by 20 students, the QT

module by 22 students, and the SC module by 18

students. In order to account for student learning

with the course, we also collected students’ course

grades provided by the instructor.

The multiple-choice items in the pretest and the

posttest were scored dichotomously, i.e. a score of

‘1’ for correct answers and a score of ‘0’ for incorrect
or blank answers. The open-ended explanations

were scored from 0 to 4 using the Knowledge

Integration (KI) Scoring Method [45, 46]. The

method is based on the Knowledge Integration

Theory [47, 48] that describes students’ science

learning as eliciting their ideas, adding new scientific

ideas, and making connections among the scientifi-

cally relevant and meaningful ideas in explaining
phenomena or justifying claims [49]. TheKIScoring

Method assigns higher scores to students’ under-

standing based on a multiple set of scientifically

relevant ideas than those based on a single idea or

those based on scientifically non-normative ideas

(see Table 2 for a rubric based on the KI Scoring

Method for an item related to a semiconductor

question shown in Fig. 10). The higher the KI
score, themore integrated the student’s understand-

ing. The KI assessment method has been validated

in multiple field studies involving more than 18,000

middle and high school students in physical, biolo-

gical, and earth sciences [45, 46, 49–51]. In a four

year study [51], the reliability of the KI assessment

method ranged between 0.72 and 0.86 consistently

over the years with no gender bias across science
disciplines.
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Table 1. Details of the modules and implementations

Prompts (N)

Module Title
Visualizations
(N)

Investigations
(N)

Multiple-
Choice

Open-
Ended

Screenshot-
Based

Implemented Week
During the Pilot Study

Quantum Basics (QB) 6 7 9 10 4 1st week
Quantum Tunneling (QT) 4 6 8 5 3 2nd week
Semiconductors (SC) 9 6 12 6 1 5th week



A test score was created as a sum of all scores a

student received on the test. Reliability of the

identical pre/post tests used in this pilot study was

a Cronbach alpha value of 0.55 based on responses
of 19 students. Reliability of the KI items used in

this studywas lower than that of theKI itemsused in

the large scale testingmainly due to the small sample

size involved in the pilot study rather than the

quality of items given in the prior research on the

KI assessment method [45, 51]. Reliability of a test

mainly relates to estimated effect sizes being lesswell

defined. The use of identical pre/post tests to report
student learning gains has both positive and nega-

tive impacts on the study. On the positive side,

researchers can take into account students’ preex-

isting understanding of the science content being

tested.On the negative side, studentsmight improve

their understanding by just taking the same test

twice, which is called the ‘test’ effect. However, the

test effect was not a concern in this study because
nanotechnology is quite a difficult science subject to

learn even with organized science courses [52–55].

After giving the same problems to college students

in the mid-term and final exams on quantum

mechanics concepts, Mason and Singh [56] discov-

ered that ‘most advanced students do not automa-

tically use their mistakes as an opportunity for

learning, repairing, extending, and organizing
their knowledge structure (p. 760)’. Students in

this study were not given solutions after the pretest.

In addition, the KI assessment put more weight

towards students’ elaboration of their ideas in
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Fig. 10.An example of an item that probes into students’ understanding about charge carriers in semiconductors. This simulation is based
on the classical molecular dynamics that treats electrons as Newtonian particles. Holes are modeled as potential wells that trap electrons.
The open-ended part was scored from 0 to 4 based on the Knowledge Integration Scoring Method formulated in Table 2.

Table 2. The Knowledge Integration (KI) Scoring Method at work

Score KI State KI Description KI Scoring Criteria1 Pretest (%) Posttest (%)

0 No information Blank answers; Off-task
remarks.

Blank 16 13

1 No idea/link Elicited scientifically non-
normative ideas or links.

A or only Zs 32 0

2 Partial link Elicited scientifically normative
ideas that were not connected.

One of the ideas from B, C, and D 32 40

3 Full link Elaborated a link between two
scientifically normative ideas.

Two of the ideas fromB, C, andD 21 47

4 Complex link Elaborated two or more links
between three or more
scientifically normative ideas.

All the ideas from B, C, and D 0 0

1 Explanation ideas:
A: Restatement (electrons go up and holes go down).
B: Holes have positive charges.
C: Holes (positive charges) are repelled by positive charges and attracted by negative charges.
D: Holes move in the same direction as the applied field.
Z: Alternative ideas.

Holes move towards the positive.
Holes want to become neutral again.
Holes move in the opposite direction of the field.



explanations than choosing a correct answer, which

is less prone to test score increase due to memoriza-

tion [45, 57, 58].

The same scoring method was used for students’

answers to all multiple-choice and open-ended

prompts in the three MWmodules. For the screen-
shot-based prompts that asked students to take and

annotate a snapshot image from a visual simulation

as an answer, a dichotomous scoring method was

used. A total module score was a sum of all scores a

student received within a module. Hence, each

student had scores on the variables that represented

his/her overall performance on the pretest (max =

60), the posttest (max = 60), the QBmodule (max =
53), the QTmodule (max = 32), and the SC module

(max = 37).

Repeated measures t-tests were applied to the

pretest and the posttest score variables. There was

a significant improvement from pre- to posttests as

measured on multiple-choice items (Effect Size =

1.02 Standard Deviation, p < 0.05), explanation

items (Effect Size = 1.09 Standard Deviation, p <
0.01), and combined (Effect Size = 1.29 Standard

Deviation, p < 0.01), as shown in Fig. 11. This

indicates that students in this course significantly

improved their understanding of quantum

mechanics and semiconductor physics before and

after the intervention using three MW modules as

homework.

In order to isolate the effects of the modules, a
variable was created to represent students’ perfor-

mance differences between pre- and posttests (the

DIFFERENCE variable = posttest score—pretest

score). Another variable was created to represent

how well students performed during the entire

course (the GRADE variable). The GRADE vari-

able was based on theA, B, C, andD grades that the

instructor gave at the end of the course based on
student performance on mid-term, final, and home-

work. An analysis of covariance (ANCOVA) was

performed on the DIFFERENCE variable while

the three module variables were entered as covari-

ates that represent the fidelity of implementation

and the GRADE variable as an independent vari-

able. This analysis model explained 70% of the

variations inherent in the DIFFERENCE variable.

Results show that a significant QBmodule effect,

F (5, 7) = 7.89, p<0.05, and a significantQTmodule
effect, F (5, 7) = 8.22, p < 0.05, on the DIFFER-

ENCE variable. These results mean that, after

controlling for the GRADE effect, students who

did better in the QB and QT modules gained

significantly more between pre- and posttests than

those who did not. No significant GRADE effect

was found, F (5, 7) = 2.79, p = 0.13. The DIFFER-

ENCE variable did not depend on the grades
students received, meaning that students, on aver-

age, gained from pretest to posttest, regardless of

how well they learned during the course. No sig-

nificant SC module effect was found, F(5,7) = 1.30,

p = 0.29. However, the effect of the SC module was

not pronounced on the DIFFERENCE variable

after controlling for students’ course grades because

of the content overlap between the course material
and the SC module. Students significantly gained

their understanding of concepts in the solid state

physics but it was difficult to statistically differenti-

ate between the understanding from the course

material and the understanding from the SC

module. In comparison, the students who benefitted

from the QB and QT modules mostly improved

their understanding of fundamental quantum phe-
nomena on their own.

These results indicate that simulation-based

experimentation can be successfully used for under-

graduate students to develop integrated under-

standing of very difficult concepts in

nanotechnology at their own pace without the

involvement of heavy mathematics. In particular,

the study shows a potential for supporting students
who initially had a difficult time to form a mental

representation of quantum phenomena. For exam-

ple, a student mentioned the modules’ contribution

to the development of his understanding by saying

that ‘I liked that the modules not only provided

visualizations of certain topics but allowed interac-

tions with the user as well. I thought this was helpful

in forming mental images of concepts.’

6. Conclusions

Formalism used to be the only way to teach con-

cepts and visions in nanotechnology. Formalism,

however, poses a learning barrier to many students

who are not comfortable with heavy use of mathe-
matical and theoretical analyses. This paper pro-

poses a visual approach to teaching nanotechnology

that may be widely applicable in K-16 education.

Through interactive graphics generated by compu-
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Fig. 11. Pre/posttest scores show learning gains through theMW
modules.



ter simulation of nanoscale phenomena, this

approach has the potential to allow more students,

be they precollege students, non-science majors, or

technician students, to learn about the fundamental

concepts and farsighted ideas in nanotechnology

without being bogged down in the difficulty of
technical details. Preliminary results from a small-

scale pilot study at the college level demonstrated

the promising power of this approach. In particular,

the results indicate that college students gained

deeper understanding of abstruse quantum ideas

from our visual quantum simulations.

Based on this pilot study, a follow-up quasi-

experimental study that directly compares the
effects of formal treatments and the visual approach

is currently underway. Future research will use

experimental designs with control groups to estab-

lish learning benefits of scientific visualizations

approach [59] and design-based methods [60] to

further improve the effectiveness of the simulations

used in this study. In addition, the modules should

be tested across student demographics and college
settings to ensure that the learning benefits reported

in this paper can be generalized to a greater student

population.
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