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The context of this paper is a “large learner data” project that seeks to re- 
spond to existing challenges by introducing educational data mining and 
learning analytics into K-12 engineering design research. To probe deeply 
into student learning, we are developing and refining computational tech- 
niques to analyze large process analytics datasets generated through a 
CAD-based software, Energy3D, that logs design process data as students 
complete an assigned design challenge, such as a net-zero energy efficient 
building. We are combining these process analytics with demographic data 
and pre/post-tests of science and design knowledge. In this paper, we re- 
visit three illustrative research cases to reflect on our experiences and les- 
sons learned with navigating big data, generating useful data visualiza- 
tions, and integrating process analytics with traditional performance 
assessment methods to relate design actions to knowledge and learning 
outcomes. 

 
 

Aims 
 

The context of this paper is a “large learner data” project that seeks to re- 
spond to existing challenges by introducing educational data mining and 
learning analytics [1] into K-12 engineering design research. Through a 
five-year collaboration, we are applying a data-intensive approach to study 
student design learning and performance. The project involves engaging 
secondary students with Energy3D (http://energy.concord.org/energy3d), a 
computer-aided design (CAD) software tool for designing energy efficient 
solutions for the built environment based on Earth science, physical sci- 
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ence concepts, and engineering principles required by the Next Generation 
Science Standards (NGSS) ETS1 [2]. 

To collect large learner data, Energy3D automatically logs design pro- 
cess data as students complete an assigned design challenge, such as a net- 
zero energy efficient building. This includes fine-grained information on 
student actions, experimentation results, electronic notes, and design arti- 
facts. For a single student, process data over the duration of a project can 
sum up to 20 megabytes, ranging from 200 to 2,000 construction and anal- 
ysis actions. To probe deeply into student learning, we are developing and 
refining computational techniques to analyze these large process analytics 
datasets. These techniques are being used to reconstruct the entire learning 
trajectory for each individual student with high resolution, providing a 
holographic method for assessing his/her performance. We are combining 
these process analytics with demographic data and pre/post-tests of science 
and design knowledge. 

To date, we have produced research findings that focus on investigating 
common patterns of student design behaviors (e.g., using scientific exper- 
imentation to make design choices, making trade-offs, idea fluency, and 
reflection), as well as how patterns of design behaviors are associated with 
science and design learning outcomes measured using traditional perfor- 
mance assessment methods. Throughout these experiences we have been 
traversing the challenges of relating design actions (as logged in Ener- 
gy3D) and knowledge (as evidenced in Energy3D performance and meas- 
ured via pre/post-tests), and how these relationships offer explanations of 
learning outcomes. In this paper, we revisit three illustrative research cases 
to reflect on our experiences and lessons learned with navigating large 
learner data, generating useful data visualizations, and integrating process 
analytics with traditional performance assessment methods. We feel that 
sharing our reflections is a critical contribution to a larger discussion on 
what it means to gather, analyze, interpret, and eventually use large learner 
data to guide improvements in how students design. 

 
 

Significance 
 

In the context of K-12 science education, engineering design is a com- 
plex cognitive process in which students learn and apply science and de- 
sign concepts to solve open-ended problems to meet specified criteria. Our 
understanding of what K-12 students learn from engineering design is lim- 
ited [3]. A 2008 literature review concluded that many K-12 engineering 
education projects lacked data collection and analysis to provide    reliable 
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evidence of learning [4]. The Committee on Standards for K-12 Engineer- 
ing Education found “very little research by cognitive scientists that could 
inform the development of standards for engineering education in K-12” 
[5]. Similarly, how K-12 students learn and apply science concepts in en- 
gineering design processes is a fundamental interest in the learning scienc- 
es. Through engineering design projects, students practice science as they 
gather and analyze data through experiment-based inquiry and apply this 
knowledge to conceive, compare, and optimize solutions. Although previ- 
ous research suggests that engineering design is an effective pedagogical 
approach to promoting science learning [6][7][8][9], there are also con- 
cerns about the so-called “design-science gap” [10] that fails science learn- 
ing in design projects [6][7]. Overall, there is considerable need for ap- 
proaches that can accurately and efficiently assess student design 
performance and learning of both science and design inquiry in engineer- 
ing design projects. 

There is a rich history of techniques for understanding how people de- 
sign; however, most of these have been implemented in postsecondary and 
professional contexts and many emphasize research, not assessment. A 
common approach is to capture “think aloud” data to conduct verbal proto- 
col analyses of design processes or design cognition [11]. Often verbal da- 
ta is translated into visualizations to explore design behavior patterns such 
as structure-function-behavior design cognition diagrams [ ], process time- 
lines [13][14][15], and linkography diagrams [16]. Some also use observa- 
tion and video-based analyses [17][18]. Another approach involves using 
design documentation such as journals to analyze relationships between 
design processes and design performance [19] or conduct latent semantic 
analyses to characterize designer performance [20]. Others use technology- 
based tools that support documenting and reflecting on design processes 
[21][22]. Some performance-based methods include using concept maps to 
assess student understanding of the engineering design process [23], ask- 
ing students to explain the relative importance of various design activities 
[24], asking students to critique a design process timeline and identify pro- 
cess improvements [25], and using design scenarios to assess problem 
formulation capabilities [26][27]. 

Translating these research-focused approaches for use as assessments in 
K-12 contexts is a significant challenge. While each approach has 
strengths, each requires time-consuming data collection, data management, 
and data analysis procedures, often involving extensive human labor. An 
additional challenge is that the complexity and open-endedness of a design 
task can make it difficult to discern design patterns or correlate patterns to 
performance. For example, a pattern that looks like “gaming the system” in 
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an inquiry activity [28] may be a legitimate search in a vast problem space 
for meaningful alternatives in a design project. For design, performance is 
not based on “getting the right answer” because multiple solutions are pos- 
sible; rather, performance needs to be a function of understanding stu- 
dents’ growth in knowledge and skills necessary for informed designing 
[29]. Collectively, these issues can significantly limit scale-up and broader 
use of existing approaches in K-12 classrooms [30]. 

 
Opportunity: Large Learner Data and Technology-based Assessments 

Information technology-based assessments offer a cost-effective solution 
for scaling up educational research. Large amounts of relevant data, real 
time feedback, and scalable and personalized support can be achieved now 
with the use of these technologies [31]. Similar to the Energy3D project, 
researchers have used technology-based assessments to study inquiry with- 
in interactive media and games [32][33][34][35]. These approaches have 
rarely been exploited for assessing design, a process that includes inquiry 
but is fundamentally distinct in many ways [36]. 

While we anticipate many affordances of integrating technology-based 
assessments into research on how people design, we also expect this will 
come with its own set of challenges. Some of these challenges may be 
unique to open-ended tasks such as engineering design that might make it 
necessary to combine learning analytics with human-based qualitative 
analysis to be able to draw strong conclusions about student learning [37]. 
As Socha et al. [38] note, some challenges may due be the complexity and 
scale of the data itself such as being able to navigate a complex dataset that 
combines multiple modes of data (e.g., activity logs, reflection notes, video 
playbacks) which traverse fine-grained to more macro-level units of analy- 
sis; some challenges may be the nature of the cross-disciplinary collabora- 
tion, which may be a requirement for these kinds of endeavors, which will 
likely involve negotiating among different perspectives (e.g., quantitative- 
qualitative, software programming-educational research dynamics). 

In this paper we focus on sharing lessons learned from using large 
learner data to identify, develop, and test approaches for assessing design 
performance and learning through engineering design projects in second- 
ary school. In the following sections, we describe Energy3D, which serves 
as simulated engineering design environment for this project. We then pre- 
sent three illustrative cases of research studies to critique and debrief on 
our experiences with using large learner data to understand how secondary 
students learn design. 
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Method: Energy3D as a curriculum and research platform 
 

Energy3D is a free, open-source software that allows students to create 3D 
buildings and simulate energy consumption [39]. The software offers a 
simple 3D graphical user interface for drawing buildings, and evaluating 
their performance using cost and energy (solar and heat) simulations (see 
Figure 1). 

As a learning experience, Energy3D provides computer-aided engineer- 
ing tools for students to design, analyze, and construct green buildings that 
utilize renewable energy. For a given design challenge, students can quick- 
ly sketch up a realistic-looking building and then evaluate its energy per- 
formance for any given day and location (see Figure 1). Energy3D can rap- 
idly generate energy consumption simulations (i.e., time graphs, heat  
maps, and a solar simulator) based on computational physics to allow stu- 
dents to make informed design decisions. Students can use a notepad tool 
to describe and reflect on their designs and science simulations. At the end 
of the design, Energy3D allows students to print out a design, cut out the 
pieces, and use them to assemble a physical scale model. 

 

Fig. 1 Energy3D performance calculated (e.g., energy & cost). 
 

As a research platform, Energy3D logs all design process data in a non- 
intrusive way as students complete an assigned design challenge. This in- 
cludes fine-grained information on student actions, experimentation re- 
sults, electronic notes, and design artifacts. This interaction data is trans- 
lated into a JSON data stream for each student with a list of all interactions 
including: (1) the date / time the action was carried out; (2) the file in 
which the action was carried out; (3) the description of the action (e.g. 
Add, Edit, Move, Resize, Notepad, etc.); and (4) the object towards which 
the action was directed. Energy3D also has the capability of reproducing 
the design process as a video display, similar to time-lapse photography, 
which integrates both activity log and notepad data. 
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These fine-grained CAD logs of large learner data possess all four char- 
acteristics of “big data” [40]: high volume, high velocity (data is collected 
in real time to support rapid feedback), high variety of data types (from 
learner actions to simulation data and experiment results), and high veraci- 
ty (data is comprehensive and accurately documented to ensure fair and 
trustworthy assessments of student performance). 

 
 

Results: Three illustrative cases 
 

We are using Energy3D to investigate: (1) patterns and relationships in en- 
gineering design processes and how these are associated with prior 
knowledge, design performance, project duration, demographic factors, 
and learning outcomes, (2) the effect of engineering design process on sci- 
ence learning outcomes (e.g., to what extent does design iteration contrib- 
ute to science learning of energy concepts), and (3) the effect of science 
inquiry processes on engineering design outcomes (e.g., scientific experi- 
mentation via Energy3D simulations and how these relate to design choic- 
es and revisions). 

Participants & Design Challenge 

 
Case 1 
-High school in Northeast, Spring 2013 
-63 students in engineering track, over 5 classes 
-Solar Urban Design Challenge 

 
 
 
 
 

 
Case 2 
-High school in Northeast, Spring 2015 
-109 students in engineering track, over 5 classes 
-Solar Urban Design Challenge 

 
 
 
 
 
 

Case 3 
-High school in Midwest, Spring 2014 
-44 students, 8 students in AP Chemistry class 
-Net-Zero House Design Challenge 

Data Sources 
 

Design replays:  Software-collected logs of student  
design actions as students were sketching buildings, 
conducting experiments, collecting data using  
simulations, and taking reflective notes. These learner  
data were used to reconstruct the entire design process as 
snapshot, which in turn were played back just like running 
a slide show. 

 
Electronic notes: All students were expected to take 
electronic reflective notes during their design process 
within the Energy3D system. 

 
Conceptions of Design Test (CDT): Students completed 
pre- and post-tests as part of their design experience to 
understand students’ conceptions of design terminology 
(CITE AUTHORS) 

 
Process Data: As students designed within the system, 
their design actions (process data) are captured in a 
JavaScript Object Notation (JSON) file. The file is first 
loaded into R statistical software as a data frame. The 
different actions are organized into multiple time series 
(i.e., one per type of action) describing how many times 
this action occurred during a particular minute within the 
activity. The number of systematic experiments were 
identified and counted. 

 

 
Fig. 2. Overview of three illustrative cases – context, participants, design chal- 

lenge, and data sources. 
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Over the past two years we have conducted multiple studies in which 
students use Energy3D to complete a design challenge. Here we focus on 
three studies, summarized in Figure 2. Each study has been previously 
published, and as such we provide only limited details relevant for the pur- 
poses of this paper. Overall, each case speaks to different research ap- 
proaches and lessons learned regarding: conducting multimodal analyses 
linking micro and macro grain data, integrating process data (internal to 
Energy3D) with pre/post-test data (external to Energy3D), pursuing target- 
ed analyses using single data modes, and generating visualizations to sup- 
port both human and computer-based pattern analyses. 

As shown in Figure 2, the context for the three cases was either a high 
school in the Midwest or one in the Northeast. The number of participants 
ranged from 63 to 109 students: Case 1 (n = 63), Case 2 (n = 109), and 
Case 3 (n = 44). While the number of participants may appear small, each 
Energy3D log file is on the order of thousands of design actions. Students 
in both contexts completed either one or both of two design  challenges. 
One challenge, Net-zero House, involved designing an energy-efficient 
single-dwelling home [30]; the other, Solar Urban Design, involved de- 
signing an energy-efficient urban block, in which each building could im- 
pact the energy-efficiency of adjacent buildings [39]. For both scenarios, 
students were provided with a one-page handout that summarized design 
requirements and provided instructions on how to open, use, and save files 
on Energy3D. Teachers were provided with similar curricular resources. 
Each design challenge project was implemented during regularly sched- 
uled class hours, and teachers were encouraged to link the project to other 
curricular goals including NGSS standards. 

Large learner data was collected for each design challenge from every 
student. As shown in Figure 2, this encompassed a variety of data sources 
and data types. Data sources included (1) data automatically collected 
through Energy3D (i.e., process data, electronic notes), (2) data collected 
through Energy3D with additional post-processing (i.e., design replays, 
design performance), and (3) data external to Energy3D (i.e., conceptions 
of design pre/post-test). In the following sections, we summarize these 
three cases to illustrate data visualization outcomes and discuss lessons 
learned. 

 
Case 1: Science Connections through Tradeoffs 

For this exploratory study, we were interested in understanding connec- 
tions between science inquiry and design, in particular students’ use of En- 
ergy3D science experiments in relation to informed design behaviors [29] 
such as balancing benefits and trade-offs [41]. A first step was to   identify 
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which automatically generated Energy3D data would allow directly inves- 
tigating these relationships. Energy3D log files document student process 
data at a very fine or micro-level grain size – e.g., Add, Edit, Move, and 
Test. Most coding frameworks on design cognition or design processes ar- 
ticulate design activities at a larger grain size such as problem formulation 
or idea fluency, which are likely comprised of sequential combinations of 
finer grain actions. Given our research goals, we selected the design re- 
plays and electronic notes (see Figure 2). 

Design replays are generated from Energy3D activity log and allow a 
researcher to observe a students’ unfolding design process as a sequence of 
design actions captured within the software. Like a video, the design play- 
backs can be replayed multiple times either as a whole, from beginning to 
end, or as smaller episodes to support focused analysis on a sequence of 
design actions. Researchers can also set the playback speed. For example, 
a design replay can be observed in real time (e.g., an hour-long project as 
an hour-long video) or at a pace such as 10-second increments (e.g., an 
hour long project as a 6 minute video). The electronic notes are collected 
within Energy3D activity logs, and provide a place for students to write re- 
flections, outcomes of experiments, ideas for what they could improve, and 
any other kinds of issue they want to document. Like all Energy3D data, 
the electronic notes are time stamped and logged in the system, and there- 
fore integrated into the design replay function. In this way, researchers can 
observe a student’s overall design process along with their evolving writ- 
ten comments. By combining design replays with the accompanying elec- 
tronic notes we could “chunk” a student’s design process into goal-  
directed design sequences, which could then be coded with existing empir- 
ically grounded frameworks. 

A second challenge was determining useful coding frameworks that 
would easily map to the kinds of observable activities evident in the design 
replays and electronic notes. Valkenburg’s coding scheme [42] provided a 
useful mechanism for characterizing sequences of design activities that 
link goals to moves (observed in the design replay) and reflections (ob- 
served in the electronic notes). For example, the electronic notes allowed  
us to see when a student was working towards a particular goal, such as 
optimizing a roof design, and the design replay allowed us to observe the 
associated design actions or “moves”. Table 1 summarizes this coding 
scheme, which includes a code for denoting references to science concepts. 
It also illustrates how data sources were integrated to analyze patterns. 
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Table 1 Action visualization coding protocol [41] 

 
Data visualizations linking log files, data replays, and reflection notes 

As shown in Table 1, an added benefit of Valkenburg’s coding scheme 
[42] is the use of symbols that could be used to generate visualizations of 
interconnecting science and design inquiry processes. For example, each 
design episode began with a goal, represented with an oval. The triangles 
represent moves or student actions such as making, editing, or changing 
the shape of a roof. When a connection to a science concept is made, this 
can be indicated with a blue dot. Student reflections are signified with a 
diamond. By generating these visualizations we could quickly identify 
connections between science and design inquiry. 

Full detailed analyses for two students through visualizations are availa- 
ble in previous work [41]. Design replays supported with detailed student 
reflective notes provided sufficiently detailed information for characteriz- 
ing student design thinking and design behaviors. One of our research 
findings was how these visualizations showed a notable progression of 
student behaviors starting with idea generation and evolving to more 
sense-making behaviors, such as balancing benefits and tradeoffs. 

The visualizations also made evidence meaningful applications of sci- 
ence learning when students attempted to balance design benefits and 
trade-offs. In a particular design episode [41], the student conducted exper- 
iments based on changes to iterative revisions to the roof and wall of his 
building, while reflecting upon the size and direction of window placement 
and the resulting solar gains. By mapping design and science  inquiry 
moves and reflections into a combined representation we can see evidence 
of important design behaviors such as systematic experimentation and de- 
cision-making with a trade-off analysis. By deconstructing the design pro- 
cess and offering a visualization for the interdisciplinary research team, we 
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were able to better articulate behaviors that were leading to science con- 
nections in students 

 
Lessons learned 

Overall, this study highlights many of our ongoing experiences with large 
learner data. It illustrates issues with navigating multi-modal data – the de- 
sign replay and electronic notes are different types of data, although the 
design replay function allows integrating these different data types and 
streams in ways that leverage the benefits of each data source. The design 
replays also supported iterative refinement of our analysis approach. This 
case also illustrates challenges with mapping activity-level units of analy- 
sis (i.e., captured automatically in the system as Edit, Move, Resize, etc.) 
to process-level units of analysis (i.e., observed as design replays but trans- 
lated into visualizations through coding). We are developing a sharper 
awareness of the non-trivial challenges of translating across different units 
of analyses, and how continuing down a pathway of technology-based as- 
sessments will require considerable work to build bridges between existing 
design inquiry frameworks and frameworks that can used for fine-grain 
analyses. This case also illustrates the value of generating visualizations as 
intermediate representations for identifying and characterizing patterns, 
even though these visualizations are manually created. These visualiza- 
tions enabled our research team to collectively understand features of de- 
sign performance and learning and investigate new kinds of visualizations 
that can support discovery-driven research. 

 
Case 2: Connecting Reflection & Informed Design 

This study investigated students’ improvements in design thinking in asso- 
ciation with level and breadth of design reflectivity [43]. Understanding 
students’ design thinking, particularly at the K-12 level is challenging. To 
tap into design thinking, we used a Conceptions of Design Test (CDT) [43] 
to assess student understanding of design through ranking and explaining 
the relative importance of a list of terms representing informed design 
(e.g., understand the problem, iteration, modeling). This performance- 
based test was given prior to starting the first Energy3D design challenge 
design activity and at the conclusion of the final design challenge. As- 
sessing reflection presents an additional challenge. The electronic notes 
option in Energy3D provides one pathway for capturing students’ reflec- 
tions during their design process. For this study, all students were expected 
to write reflective notes while designing their net-zero houses and were 
prompted to “describe your design ideas and explain why you think they 
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are good ideas.” These electronic notes were examined and scored using a 
coding protocol based on existing literature that focuses on level and 
breadth/amount of reflectivity [43]. 

 
Integrating system-generated data with questionnaire data 

Using statistical analysis, we sought to understand if a relationship exists 
between student reflectivity and their understanding of informed design.  
As such, this study provides an example of integrating data generated from 
Energy3D (the electronic notes) with data generated external to Energy3D 
(pre/post Conception of Design Test). A paired t-test was used to evaluate 
gains in informed design thinking and a one-way ANOVA was used to 
evaluate the relationship between student reflectivity and gains in informed 
design thinking. 

The analysis showed gains in recognition of informed design. We found 
that highly and moderately reflective students had higher gains in informed 
design thinking compared to those with low reflectivity scores. However, 
the results did not indicate that students who demonstrated a higher level  
of reflectivity also became more informed designers. One possible expla- 
nation is that students in the study were beginning designers with limited 
experience. That we observed some gains in informed design thinking in 
relation to reflectivity suggests that Energy3D provides a learning experi- 
ence that may help students develop awareness even though their reflexivi- 
ty skills may lag behind. While reflection is an important component of 
designing and design learning, perhaps other behaviors are as essential. 
The path to informed design, it seems, cannot be predicted by reflection 
alone, indicating the need to better understand how other patterns of in- 
formed design interact. 

 
Lessons learned 

This study used more traditional forms of assessment (i.e. pre/post-tests 
and students responses/reflections) as opposed to log data. This case pro- 
vided an innovative way to think about assessing reflection in terms of 
both breadth and depth. However, as we move toward using larger da- 
tasets, this method of coding reflections may prove too difficult from a 
scale-up perspective. In comparison, analyzing the Conception of Design 
Test is quite straightforward and could be automated. Looking at the rela- 
tionship between reflection depth and reflection breadth might allow a 
macro-level view of reflectivity in the future. 

By providing students with a reflection prompt, we had a more con- 
sistent quality of reflections than when students are not given any guidance 
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other than to “think and reflect like an engineer” [44]. Even with guidance, 
we have observed that the quality of reflections can vary significantly from 
student to student. 

We anticipate many future opportunities as we expand on this study lev- 
eraging the large learner data. First, the Conceptions of Design Test pro- 
vides one vantage point for eliciting what students consider to be important 
in designing (and why). In the future we are exploring ways to triangulate 
this data with the process activity log files to investigate relationships be- 
tween what students express as important to design and what behaviors 
they employ while designing. Similar to the first case, this will require 
finding ways to link the fine-grained process data and perhaps sequences  
of these actions to performance outcomes from the Conceptions of Design 
Test as well as reflectivity level to more fully characterize student design 
performance. 

 
Case 3: Connecting Design Replays & Process Data 

Although idea fluency plays an important role in design, it can be hard to 
identify in student design activities because we may not have access to the 
full realm of design possibilities a student considers before focusing on a 
smaller subset of options. Similar to the first case we presented, we used 
the design replays for this exploratory study but now in combination with 
the process data (the micro-grained activity logs) to examine if idea fluen- 
cy is observable from watching the student design behaviors. The research 
goal was to determine if and how learning analytics can confirm the pres- 
ence or absence of idea fluency [45]. 

As an exploratory study, we selected a subset of an existing large learn- 
er dataset (n=44). We reviewed three hours of design activity time for a 
class of eight (8) students, representing approximately 160 MB of Ener- 
gy3D process data as design replays and the corresponding process data. A 
coding framework was iteratively developed for idea fluency as observed 
through watching Energy3D design replay files. The coding framework 
links levels of idea fluency to distinct design actions documented in the 
Energy3D log files such as building, modifying or adding walls, roofs, 
windows, solar panels, and trees. 

 
Data visualizations linking system-generated process timelines with human 
observations 

Two researchers coded for idea fluency and were able to distinguish a very 
idea fluent student from a student who generated considerably fewer ideas. 
By combining the design replays and the coding protocol, we were able  to 



Using Big Data in Understanding How High School Students Design 659 
 

 

determine that idea fluency is directly observable through Energy3D. The 
most idea fluent student was observed building and modifying the win- 
dows and solar panels in order to achieve better solar performance of the 
building. This was observed in the design replays as she changed the size, 
shape and position of windows in order to have a higher functioning home 
with lower energy usage requirements. She also explored many positions 
and quantities of solar panels. In contrast, while the least idea fluent stu- 
dent in the sample did modify windows and solar panels in his design, he 
did not explore a wide range of options. The coding protocol allowed re- 
searchers to discuss student range of ideas numerically, as students’ overall 
idea fluency scores could range from 0 to 2. 

Challenges with linking observed design behavior (idea fluency) and 
process data (build, add, or modify a design element) was further investi- 
gated using statistical analysis. When students use Energy3D, design ac- 
tions (process data) are captured in a JavaScript Object Notation (JSON) 
log file. We analyzed this process data for each individual student in the 
study by loading the log file into R statistical software as a data frame. The 
different actions (e.g. Build/Modify Windows) could then be organized in- 
to multiple time series diagrams (i.e., one per type of action) that show 
how many times an action occurred during a particular minute within the 
log file. Figure 3 represents this action count output for the (a) most and 
(b) least idea fluent students identified from the design replay analysis. 
The process data analysis confirms that these students are distinguishable 
by their process data, just as they were from the design replays. 

  

Fig. 3 (Right) Idea fluency as seen from the process data for most idea fluent stu- 
dent (Left) Idea fluency for least fluent students 

 
Figure 3 allows a way to visualize a design process generated from the 

fine-grained log files for the most idea fluent student in the class for all 
possible construction activities (i.e. Build/Modify: Walls, Roof, Windows, 
Solar Panels and Tree) and for specific window for building or modifica- 
tion actions. Not only does the process data correspond with observations 
from the design replays, the graphs also offer a useful visual tool to graph- 
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ically assess the extent to which students practice idea fluency. As such,  
we anticipate this approach will be fruitful for analyzing other kinds of in- 
formed design behaviors. 

 
Lessons learned 

In general, this case provides additional insights into using multi-modal 
data (i.e. design replays and process data) to understand design behavior, 
preliminary stages of quantifying design behavior (i.e. idea fluency), and 
generating data visualizations (i.e. graphs of process data counts) as inter- 
mediate representations for identifying and characterizing patterns. Coding 
the design replays for levels of idea fluency allowed us to quantify qualita- 
tive data, while visualizations of the process data allowed a qualitative per- 
spective for the quantitative data. Through the case of two students, we 
demonstrated how micro-level process data could be used to validate mac- 
ro-level observations made from viewing student design process through 
design replays. Together process data and design replays essentially tell  
the same story, and might be able to be used interchangeably. However, 
future work will need to investigate design behavior that might not be easi- 
ly detected from observing the design process, and we will need to contin- 
ue our growing understanding of ways to link fine-grained micro-level de- 
sign data (distinct design actions) to macro-level design behaviors 
(informed designing) to combinations and sequences of macro-level design 
behaviors. 

 
 

Summary and future work 
 

Engineering design is a skill that is hard to measure, but it must be fairly 
assessed if it is to be taught in every K-12 classroom as required by the 
Next Generation Science Standards. The large learner data techniques we 
are developing through this project are likely to make an impact on the as- 
sessment of engineering design in K-12 contexts. In this paper, we offer 
three cases as pathways for thinking about the kinds of research that can be 
conducted with large learner data about how students design and for re- 
flecting on lessons learned. By sharing these experiences we hope to con- 
tribute to crucial conversations on what it means to gather, analyze, inter- 
pret, and eventually use large learner data to guide improvements in how 
students design. 
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Challenges and opportunities 

As shown in these three cases, we are using Energy3D to investigate (1) 
patterns of engineering design processes and how these relate to design 
performance including science and design learning outcomes, and (2) rela- 
tionships between science and design inquiry. While we are finding that 
large learner data provides many opportunities, there are also many chal- 
lenges. In some cases, we have developed and tested approaches to resolve 
challenges; however, the essence of these challenges remains as areas for 
ongoing development. These are summarized below in terms of navigating 
the complexities of multi-modal data, translating among different units of 
analysis and inquiry lenses, and generating intermediate visualizations. 

 
Navigating the complexities of multi-modal data 

The data generated through Energy3D contains data of different types (de- 
sign replays, activity logs, electronic notes, process analytics, etc.) and 
streams (some data is generated within the system, some requires post- 
processing). This creates a rich and complex data set with many opportuni- 
ties to integrate and triangulate among different data sources. As an exam- 
ple, the design replays affords zooming in and out, fast forwarding, and 
rewinding to locate a phenomenon of importance that can then be investi- 
gated through other data sources. Also, some of the data can be automati- 
cally analyzed; some requires manual coding but could be automated in the 
future. However, navigating such a complex dataset to make informed re- 
search design decisions can be its own challenge. What stream or com- 
bined streams of data can best provide the most direct evidence for a given 
research goal? How to combine streams that have different scales or units 
of analysis? 

 
Translating among different units of analysis and inquiry lenses 

A central theme in our on-going research is finding ways to map fine- 
grained activities captured in the Energy3D logs (e.g., Edit, Move, Add) to 
more coarse-grained design process activities (e.g., balancing trade-offs, 
reflection, idea fluency). This translation challenge has many elements. In 
part, it involves mapping across different units of analysis; in part, it in- 
volves mapping patterns that can emerge through data mining to patterns 
that have theoretical or practical value. As shown in these cases, certain 
kinds of data afford building bridges between different units of analysis 
and conceptual frameworks. Case 1 demonstrates how the electronic notes 
feature provided a bridge for connecting individual “moves” (activities   in 
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the log file) and reflections (comments documented in the electronic notes) 
to design process sequences (observed in design replays). Similarly, Case  
3 demonstrated how process data could be used to validate observations of 
idea fluency in the design replays. Case 2 tells a different story of integrat- 
ing process analytics with performance assessments. Other  researchers 
have noted this difficulty in translating big data from students into actiona- 
ble intelligence, and our research attempts to address these difficulties, 

 
Generating intermediate visualization 

Perhaps the critical importance of visualizations is no surprise; we know 
that visual representations can be powerful. The cases presented in this pa- 
per continue a history that illustrates the power of design process visualiza- 
tions as both outcomes and intermediate tools for making meaning of de- 
sign behaviors. Our research team has repeatedly experienced the many 
benefits of iteratively generating intermediate visualizations to aid pattern 
discovery and characterization, as well as collective sensemaking. This is 
providing an added push towards developing visual process analytic tech- 
niques, as illustrated in Case 3. In addition, we are learning how interme- 
diate data visualizations are helping us traverse the challenges of multi- 
modal data: visualizations generated from the micro level data offer a more 
macro level view more in line with existing research and frameworks for 
analyzing design behavior. 

 
Using the affordances of human analysis as a pathway for scaling up big data 
analysis 

Many of our studies rely on some element of human labor to establish 
links between micrograin design process actions and macro level patterns 
of design process behaviors (made up of many combinations of micrograin 
actions). This is not feasible at the scale of big data, yet we are finding use- 
ful ways to integrate learning analytics with human based qualitative anal- 
yses that could be scaleable. Case 3 illustrates how we combined labor- 
intensive human analysis with visualizations generated from Energy3D log 
files to test for observed variations of idea fluency. In other words, we 
used the affordances of human analysis to characterize macro-level obser- 
vations that could then be tested with system generated micrograin design 
action representations. This appears to offer a pathway linking initial de- 
velopment of design patterns that meaningfully distinguish variations in 
design patterns (via human analysis) with log file generated patterns (via 
automated analysis). 
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Iterative and integrative co-development 

Through these reflections we came to understand the iterative and integra- 
tive dimensions of large learner data research for the context of design 
cognition. Most lessons learned, from these three studies as well as the 
larger body of research connected with this project, are used as feedback to 
improve the Energy3D software. For example, we are developing ways to 
enable automatic assessment of solution quality, which has consequences 
for what features are logged in the system, how these can be easily extract- 
ed for analysis, and what kinds of quality assessment information might be 
provided to students as a formative feedback. As another example, our in- 
terest in the informed design behavior of balancing trade-offs (Case 1) has 
resulted in integrating cost calculations into the energy calculations so that 
students can more easily explore and grapple with trade-offs between cost 
and energy efficiency. Similarly, our interest in reflection (Case 1 and 2) 
has changed the ways reflection notes appear on the monitor as a prompt 
for students to write electronic notes more frequently and with greater de- 
tail and intent. 

Our experiences also support the insights of Worsley and Blikstein [17] 
in how integrating learning analytics with human-based qualitative analy- 
sis may be necessary for situations that involve open-ended tasks such as 
engineering design. Each case in this paper illustrates integrating qualita- 
tive and quantitative perspectives as one mechanism for bridging the gap 
between different units of analyses. In some cases, qualitative approaches 
such as observing the design replays are used to inquire into elements in 
the log files; in others, quantitative approaches are used to inquire into 
qualitatively observed design patterns. Each case also illustrates integrat- 
ing top-down and bottom-up approaches, which perhaps explains why the- 
se three cases are exploratory studies along two intersecting tracks: explor- 
ing features of a design phenomenon (e.g., reflection, science-design 
integration, idea fluency) and exploring what aspects of the system allow 
investigation or visualization of that phenomenon. The top-down approach 
starts with existing design cognition theories that are appropriate to the 
study, and then looks for ways to formulate these theories in forms com- 
putable from the Energy3D logs. Case 3 provides a useful example of this 
approach. The bottom-up approach starts with the Energy3D logs and at- 
tempts to reveal features in the data using design cognition and perfor- 
mances questions without necessarily being guided by a specific design 
theory. While the cases presented in this paper do not provide as much de- 
tail regarding this particular approach, our other research on visual process 
analytics provides examples of using data mining to visualize low-level 
data for researchers to recognize high-level patterns. 
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