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A central challenge of protein electron transfer theory is to
understand how protein dynamics affects electronic tunneling
from donor to acceptor. We studied this problem by use of
computer simulation method. The central result is that elec-
tron transfer dynamics can be described by a time-dependent
version of the two-state approximation, which amounts to
the solution of a time-dependent Schrodinger equation drived
by a time series of effective two-state Hamiltonians yielded
by applying Lowdin’s partitioning technique to the Hamil-
tonian of the whole system, obtained by using semiempirical
all-valence-electron quantum chemical methods, for a series of
conformations taken consecutively from an equilibrium molec-
ular dynamics trajectory of the studied protein.

I. INTRODUCTION

In weakly coupled donor-acceptor systems, the rate of
electron transfer(ET) reactions is given by the golden rule

2
kgt = %|TDA|2(F.C.) (1)

where Tp 4 is the effective electronic coupling matrix el-
ement between the donor and acceptor localized states
and (F.C.) is the thermally weighted Frank-Condon over-
lap factor between donor and acceptor’s nuclear vibronic
manifolds. In an orthogonal basis, Tp4 can be given by
Larsson’s equation

Tpa(E) =Y Hp, [(EI' ~H")7'],  Hya (2
bi,bj;

where b;,b; are localized bridge states that couple di-
rectly to donor and acceptor through the Hamiltonian
matrix elements Hpy, and H 4y, H? is the bridge Hamil-
tonian, I’ is a unity matrix which has the same dimension
with the bridge Hamiltonian, and E is the tunneling en-
ergy. A theoretical issue for long-range ET in proteins is
the reliable calculation of Tp 4, and of more importance,
how it is controlled by the structural motif of the medi-
ate bridge (this is interesting because of its relevance to
the engineering of ET)!. A tunneling pathway model has
been developed by Beratan, Betts and Onuchic? to de-
scribe how the protein environment may influence Tp 4.
In their model, the intervening structure between donor
and acceptor is decomposed into subunits linked by co-
valent bonds, hydrogen bonds, and through-space inter-
actions(van der Waals contacts). Each link is associated
with a decay factor, characterizing the decay of coupling
strength with respect to length of the link. A graph-
search algorithm is used to find the prevailing tunneling

pathways in proteins and to calculate their relative cou-
pling strengths. A remarkable success of the tunneling
pathway model was that it predicted that S-sheet struc-
tures would be more effective in ET than « helices, which
has received strong support from experimental observa-
tions3.

Since Tp4 is structure-dependent, it may differ from
one conformation to another. However, the value of Tp 4
for a given protein is usually calculated based on the stan-
dard conformation of the protein determined experimen-
tally by X-ray cystallography. A question immediately
arises here: Can the Tp, thus obtained be representa-
tive for the ET capability of the protein, which is actually
moving around in physiological condition? The answer to
this question does not seem very positive. Several groups
have started to question about it*®. It has been shown
by Wolfgang et al. * that even modest structural fluc-
tuations generated by standard molecular dynamics(MD)
method can lead to changes of Tp 4 that are large enough
to challenge conclusions drawn from electronic structure
calculations on the basis of computations on individual
geometries. We also found from our own calculations that
Tpa may sometimes fluctuate around zero (presumably
due to the effect of destructive interference). According
to eq. (1), Tpa = 0 means that the electron can never
transfer to the acceptor site.

A plausible idea to fix the problem is to introduce
an average Tpa, for example, the root mean square

(T3 4), over an ensemble of conformations, to the rate
expression eq.(1)>. Computationally, this ensemble of
conformations can be a large number of snapshots ran-
domly taken from a MD trajectory. Strictly speaking,

(T3 4) would statistically represent the ET rate well
only if an ET reaction could take place in no time. Nev-
ertheless, tunneling is a dynamic event. During a tun-
neling process, the Hamiltonian governing the electronic
motion evolves simultaneously with the propogation of
electronic wave function. Therefore the tunneling of elec-
tron depends upon a Hamiltonian time series rather than
just a single Hamiltonian or an average one. It remains a
question how an electron will respond to the fluctuations
of protein environment. Could the actual electronic pro-
pogation through a vibrating protein structure in a given
time t be described simply by the average electronic cou-
pling over the same period /(T3 4):?

We shall present in this paper a systematical computer
simulation study for the above problems. The strategy
is to investigate the quantum dynamics of a tunneling
electron in a fluctuating external field provided by a pro-
tein environment. The basic assumptions we made are
as follows: (a) The protein dynamics is treated classi-



cally: This assumption implies that the nuclear motion
is completely decoupled from electronic degrees of free-
dom, particularly, the nuclear motion is not affected by
an electron tunneling event; (b) The electronic motion is
treated quantum mechnically: It is assumed that the tun-
neling electron obeys the single-particle time-dependent
Schrodinger equation ¢hd¥ /0t = H(t)¥(t); (c) H(t),
the Hamiltonian for an excess electron in the interior
of a protein at time ¢, is given by the single-particle
Hamiltonian obtained for the protein conformation at
time t(for instance, the converged Fock matrix yielded
by self-consistent field computation): This assumption
means that the tunneling electron obeys the ground-state
picture and single-particle protocol in the same way as
the valence electrons do, as a result it experiences the
same Hamiltonian as the other electrons do; Furthermore
it means that the valence electrons belonging to atoms
around donor and acceptor and along the tunneling path-
ways do not feel the tunneling of the excess electron, in
another word, the electronic structure of a protein is not
distorted by tunneling. The readers have to bear in mind
that the conclusions we are going to draw about protein
ET dynamics in this paper are based on these three gen-
eral assumptions.

Some of our major results have been presented in a
letter®. In this paper, we shall give the details about
our simulations. The paper is organized as follows. The
time-dependent Schrédinger equation in a fluctuating
nonorthogonal basis is given in Section II. In the same
section, we also discuss the calculation method for the
nonadiabatic coupling matrix elements. The two-state
and general multi-state reductions using Lowdin’s par-
titioning technique are presented in Section III and IV.
Technical details about the computer simulation are dis-
cussed in Section V. To mention a few, the simulation
of protein nuclear dynamics was carried out by using the
molecular simulation package CHARMMY, and the Natu-
ral Bond Orbitals(NBO) method® was used to transform
the Schrédinger equation from atomic orbital (AO) ba-
sis into bond orbital (BO) basis. Results and discussions
are presented in Section VI. Section VII concludes the

paper.

II. TIME-DEPENDENT SCHRODINGER
EQUATION IN A FLUCTUATING
NONORTHOGONAL BASIS

In this Section, we derive the formulism of the
time-dependent Schrédinger equation in a fluctuating
nonorthogonal basis. We start from the operator form
of the Schrodinger equation

iho [ (1)) = H(t)| % (1)) (3)
where W (¢) is the electronic wave function at time ¢, H (t)
is the Hamiltonian at time ¢, and & is the Planck con-
stant. Assume we have a time-dependent nonorthogonal

basis set |a(t)), the overlap matrix is also time-dependent
Sap(t) = (a(t)|8(t)). The basis functions satisfy the nor-
malization condition at any time

F= S Ja) [571],
aB

To study the propogation of an electron in such a basis is
to compute (a(t)|¥(¢)). Inserting the identity operator
into both sides of eq.(3) and projecting ¥ (¢) onto « yields
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Two different notations for the wave function can be in-
troduced

L (B (4)

1,5 6lw)) (5)
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where d = (d1,ds,---,dn), N is the electronic dimension
of the system. Correspondingly the Schrédinger equation
becomes

ihOyE(t) = ST (t) [H(t) — ihK (t)] #(t) (6)
ihdydt) = [H(t) +inL(t)] S~ (0 ) )
where Kap(t) = (a(®)|0:8(t)) and Lyg(t) =
(Ora(t)|B8(t)). To derive eq.(7), we see from the first

derivative of the equality Zw Sar[S7' 6 = das that

5 500 5]+ Ylalan [571],
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If the basis functions are orthonormal, S(t) = I, then
K(t) = —L(t) (because {(Oia|B) + {(a|0:5) = 0), we find
eqs.(6) and (7) are identical.

The site occupancy is defined as the diagonal elements
of the following matrix P;(t) = p;i(t)

p(t) = S~ ()d(t)d' (1) = S(H)F(1)# (¢) (8)

For computational convenience, we adopt the second no-
tation (Z) in our calculations.

Eqs.(6) or (7) tells us that to understand the ET dy-
namics of an electron in an interested system we need to
know three time series S(t), H(t) and K(t) or L(t) for



it. While obtaining S(¢) and H(t) is straightforward, the
calculation of K (t) or L(t) is more complicated. We shall
discuss more about it in the following.

If we choose a localized basis for a time-dependent cal-
culation, we have to address the problem of fluctuating
basis since localized basis fluctuates as atomic configura-
tion fluctuates. The K or L term is called the nonadi-
abatic coupling (NAC) matrices *!°. The NAC matrix
elements can be rewritten as

0
OR;
if the wave function ®; depends only on the position R;
of the nucleus to which orbital ¢ belongs. One can see
from the above equation that for a stable protein whose
atoms vibrate in the vicinities of their thermal equillib-
rium positions, the contributions from the nonadiabatic
effect are of the magnitude of phonons, which is usually
much smaller than the strength of electronic couplings.
Another property of the NAC matrix elements is its tem-
perature dependence. The effect of K;; on ET dynamics
(and the so-called electronic friction for MD?) diminishes
when the system cools down. For a liquid whose atoms
move wild and rapidly, the NACs may turn out to be
very important.

A simple idea to calculate the NAC matrix elements is
to introduce the concept of advanced and retarded over-
laps. In fact the NAC matrix element can be approxi-
mated by a differential form

(q)z | 8tq)j> ~

QL& { / B (r) 1 (r)dPr — / <I>§(r)<1>§'—‘”(r)d3r} (10)

where 0t is the time steplength, the first term in the right
hand side is called the advanced overlap, the second the
retarded overlap. These overlaps mean the overlaps of
an orbital with another one at different time. Let us just
forget about the time coordinate temporarily, assume the
atom associated with the orbital index ¢ is at the position
where it is going to be at ¢+ dt or has been at ¢t — §t, and
calculate these advanced and retarded overlap integrals
as if they were usual ones.

Kij(t) = R; - (®;(R)| 5 ®;(R;)) 9)

Time plane in phase space

i i

FIG. 1. The NAC matrix elements are obtained by calcu-
lating the retarded and advanced overlap matrix elements.
The NAC matrix is not necessarily antisymmetric nor sym-
metric, due to the asymmetry of orbital trajectories in the
phase space.

In a generic nonorthonormal basis, K is not necessar-
ily an antisymmetric matrix (therefore H — iAK is not
a Hermitian), since in general [(®;]|0;®;)| # |(®;]|0:®;)]
(see Fig. 1). But if the basis is orthonormal, it has to
be an antisymmetric one in order to guarantee that the
operator in the right hand side of eq.(6) is a Hermitian,
which is a necessary requirement from the conservation
law of particle numbers in an orthonormal basis.

III. THE TIME-DEPENDENT TWO-STATE
PICTURE

In a nonorthogonal basis, the effective two-state Hamil-
tionian matrix elements at time t are obtained by apply-
ing the Léwdin partitioning technique to the Hamiltonian
matrix H(t) of the whole system, as follows

Hpp(t) = Hpp(t) + Thp(t) (11)
Hpa(t) = Hpa(t) + T(1) (12)
HEa(t) = Haa(t) + Txa(t) (13)

with

THEp(t) = > (ESpy,(t) — Hpp, (t))

bi,bj

x [(Esbr(t) — H" (1) ’1] (ESy,p(t) — Hy,p(t))

bib;
(14)

THA(t) = > (ESpy,(t) — Hps, (1))

1Y)

o>

x [(Esbr(t) - Hbr(t))’l] (ESy, a(t) — Hy, (1))

105

(15)

TRA®) =Y (ESan () = Han, (1))
bi,bj

x [(Esbr(t) - Hbr(t))‘l]b



where E is the tunneling energy, which is normally close
to Hpp(t), Haa(t) (for convenience, we shall drop off
the superscript E, and denote Hpp by Ep and Haxa
by Ea ), D, A,b; stand for the donor, acceptor and the
bridge states respectively, and S(¢) is the overlap ma-
trix at time t. Hpa(t) represents the through-space in-
teraction, which is usually very small in long-range ET
(and sometimes we neglect it). Tp 4(¢) is the conventional
superexchange coupling in literature, while Tpp(t) and
T4 4(t) are the backscattering matrix elements which are
introduced to account for the interactions of donor and
acceptor with their local environment. As is well-known,
Tpa decays exponentially with respect to the increasing
of the separation distance between donor and acceptor,
whereas Tpp and T'4 4, which represent in nature the lo-
cal electronic properties around the donor and acceptor,
have nothing to do with the length of the bridge (Fig.
2). A common property of the three matrix elements
is that they share the same poles in the energy domain,
namely, when the tunneling energy approaches the bridge
eigenstates, they diverge and consequently the two-state
approximation (2SA) breaks.

Protein Backbone

FIG. 2. A complete two-state picture for protein electron
transfer. The backscattering matrix elements Tpp and Taa
rest upon the local environment around donor and acceptor,
represented by the two circles in the figure.

In contrast to the well-known importance of T 4, the
role of Tpp and T4 4 has not been explicitly mentioned,
to our knowledge. This may be due to the fact that
most of previous Tp4 calculations were devoted to find-
ing the resonant electronic states. The energies of donor
and acceptor states have to be varied such that the sys-
tem reaches resonance. In the case of resonance, Hpp ~
H a4, which means that the effective two state system is
on resonance as well. In fact, the role of the backscat-
tering matrix elements in the static case is apparent: If
we rewrite the resonance condition for the two state sys-
tem: Ep + Tpp ~ E4 + Tha, we shall see the energy
shift required for resonance is Ep — E4 & Tas — Tpp.
The reason that Ep = E4 is always not the resonance
condition for a real protein is owing exactly to the fact

that the local chemical structures surrounding donor and
acceptor are always distinct.

In the absence of the Landau-Zener fluctuation,
namely, when the donor and acceptor are energetically
static, Tpp and T'a44 will become important. In such a
case, T'pp — Tas acts as an effective driving force which
brings the donor and acceptor in and off resonance with
frequencies resting on the motion of the local environ-
ment around the donor and acceptor rather than the
donor and acceptor themselves. On the other hand, even
in the presence of the fluctuations of potential energy
surfaces Ep and E4, Tpp and T4 4 may either prolong
or shorten the time in which the system remains in res-
onance, or, when Tpp — T44 is comparable in magni-
tude with Ep — F 4, increase or decrease the times of
Landau-Zener crossing. Due to the localization property
of backscattering, the fluctuations of Tpp and Ty4 are
not completely uncorrelated with those of Ep and E4.
The total driving force Hpp —H 4 4 is in fact the result of
concerted motion of donor, acceptor and their surround-
ings (interrelated by the Newtonian equations of motion
in the MD simulation). Hence Tpp and Taa are not
completely stochastic additions to the effective potential
energy surfaces (though they can be regarded as some
kind of heat bath or dynamic energy disorder).

In the above discussion, we describe the two state re-
duction which simplifies a complicated protein ET sys-
tem greatly into a two state model, and the physical
meaning of the reduced system. In the context of time-
dependence, such a procedure would be justified only
when the following Schrédinger equation reproduces ap-
proximately the electronic propogation between donor
and acceptor in the entire ET system

‘I’D(t)] - {’H?}D(t) HEA(t)] [‘I’D(t)
Wa(t) MHDA®E) HEA®) | | Palt)

ind

g7 (17)

The overlap matrix element Sps4 = Sap has been omit-
ted since in long-range ET it is negligible, Spp = Saa =
1 if we assume that the states have been normalized,
therefore, the overlap matrix is dropped off in the above
equation. In the absence of a general analytical solution,
eq. (17) can be solved if the Hamiltonian # is time-
independent (Appendix A).

We shall prove in this paper that eq.(17) can reproduce
the exact ET dynamics within a certain amount of time
(normally a few hundred femtoseconds with a constant
tunneling energy F). This statement, which we call the
time-dependent two-state approximation (TD2SA), was
repeatedly proven valid in a series of computations for
azurin (-sheet with various donor-acceptor pairs (hence
different levels of Tpa). The detailed numerical results
will be presented in Section VI. The following discussion
is based on the preconception that the TD2SA works.

Here we discuss the question raised in the Introduc-
tion: Can an average of Tp 4 (t) be a good approximation
in expressing ET rate? Considering a two-state system
in which the donor and acceptor are kept in resonance



(not necessarily fixed) forever while T)p 4 is fluctuating,
the transfer probability from donor to acceptor can be
explicitly written as

Ppa(t) = sin® E /Ot TDA(T)dT] (18)

provided that the electron is at the donor site when
t = 0. If we do not consider the fluctuation of Tpa(t)
but replace it with some sort of average, for instance,
its root mean square /(T3 )7 (where T is the time
length for the average), we will obtain the following

transfer probability P4 (t) = sin® [% (T3 A)t}. Obvi-
ously the actual dynamic behavior may be different from
the sinusoidal one described by the latter. For exam-

ple, if we assume that Tpa(t) can be expanded into a
cosine series Tpa(t) = % + > .~ ancos(nwt) (where

2n/T), then /TH=y/(2)° + 5532, a2,
whereas the actual transfer probability is Ppa(t) =
sin” [£ (%2¢ 4+ 307 | 2= sin(nwt))]. It is clear that the
actual transfer probability is affected by not only the
Fourier coefficients a,, but also the frequencies (but tak-
ing the average of Tpa washes out the the latter effect).
The importance of frequencies is obvious for an extreme
case when Tp4(t) vibrates with a single high frequency
mode Tpa(t) = fuw cos(nwt) (where n > 1). In this case,
V(T3 ,) = hw/v/?2, while Ppa(t) < sin*(1/n), which
means that the ET rate is actually very small.

Despite of its simplicity, the above analysis has shown
a circumstance under which the average of Tp4 cannot
depict dynamic ET. In real proteins, particularly those
systems with strong interference effect, we may encounter
a similiar failure if we were to represent ET by an average
Tpa-

Although it has been shown that Tpp and T'4 4 do play
a role on ET reaction, it does not seem that the tunnel-
ing pathway model has to be modified to take them into
consideration, due to their localization property. Yet, a
more intriguing question is how to incorporate the dy-
namic effect into the pathway model. The concept of
tunneling pathways is based on spatial decomposition
of Tpa. If the potential energy profiles along different
pathways become time-dependent, would the perturba-
tions due to thermal fluctuations become large enough to
reshuffle the relative importance of pathways, namely, to
overthrow the dominance of the major pathways(if they
exist)? If the answer is negative, one can surmise that
ET reactions may really happen through pathways. Al-
though in this paper we are not going to envisage the
time dependence of tunneling pathways, it should merit
more investigations in the future.

w =

IV. GENERAL MULTI-STATE REDUCTION FOR
ELECTRON TRANSFER

We have shown in the above section that the TD2SA
presents a largely simplified picture for studying compli-
cated ET dynamics in proteins. If, however, a bridge
state joins resonance with the donor and acceptor, the
two-state picture may fail. Such a case invites an extra
reduced state to describe the motion of the third resonant
state.

\
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Protein Backbone
FIG. 3. Three-center electron transfer model. The redox

center D is the origin(donor), M is the intermediate site (mid-
dle acceptor), and A is the destination(final acceptor).

We introduce here a general framework for the multi-
state reduction (MSR). Let us assume that we would like
to do a n state reduction for a protein electronic structure
which consists of IV orbitals. The n orbitals are labeled
as p1, P2, -, Pn, while the remaining orbitals (the bridge)
as by, ba, -, bn_n(N > n), the reduced matrix elements
are given by using the projection technique

HE

pipj

(t) = Hpip, (1) + Ty, (1) (19)

TE, (t) = [ESpu,(t) — Hpy, ()] x

bi,bj

{[BS" () =B ()] '} [ESup, () = Hypp, (1)) (20)

bib;

Similiar to the two-state reduction scheme, the final goal
of the MSR is to approximate the ET dynamics of the
real system with a reduced time-dependent Schrédinger
equation in which the reduced Hamiltonian is given in
the above projected form: ihd,¥ = HFW.

Let us study an ET system which has three redox
centers, denoted by D, M, and A, respectively(Fig. 3).
There are two possible types of ET reactions in a three-
center system''. The first one is the superexchange
mechanism: D*.--A — DT ...A~. The second one is the
sequential mechanism: D*---M---A — D*...M~---A —



Dt .-M-.-A". Three-center ET kinetics follows the su-
perexchange pattern when the intermediate state M is off
resonance with the donor and acceptor. In the resonance
regime, the sequential pattern occurs where the interme-
diate site is also populated. For the same three-center
system, the ET reaction should be much faster in the
sequential channel than in the superexchange channel.

Tight-Binding Model System
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FIG. 4. A nine-state tight-binding model system. The
site energies of all bridge states equal Ep, the ener-
gies of the donor and acceptor are zero, the intersite
couplings are Vpp (bridge-bridge), Vpi (donor-bridge),
Vem (intermediate state-bridge), and Vy 4 (bridge-acceptor),
non-nearest-neightbor interactions are neglected. The site en-
ergy of the intermediate site Eys is adjusted to drive the sys-
tem into various transfer patterns.

In this Section, we shall discuss the three-center reduc-
tion with a simple tight-binding model (which is analo-
gous to the Hiickel model), since three-center ET reac-
tions are relatively unfamiliar and we would like to estab-
lish a clear-cut picture before handling genuine systems.
Studies for proteins will be given in Section VI.

Fig. 4 illustrates the tight-binding model for our study.
For simplicity, we have chosen a homogenous system in
which all the bridge sites have the same energy (Ep = 4,
arbitrary unit) and all the intersite couplings are identi-
cal (Vp1 = Vna = Vgum = Vg = 1), consequently the
backscattering matrix elements for D and A are equal
(this saves us efforts to tune them into resonance). Be-
cause of the difference of surroundings, the backscatter-
ing for the low-lying intermediate state differs from those
for D and A. Therefore, the three-state resonance condi-
tion is not intuitively Ep = Ej; = E4. For a given static
system, the transfer probilities from D to M and D to A
oscillate with specific frequencies. The three-state reso-
nance conditions can be found by computing the max-
imum electronic occupancy tunneled via the M site in
several oscillation periods. Fig. 5 shows that |Ex — Ep|
for resonance increases when the couplings between M
and its neighboring sites (Visp) turn stronger. When
Ve = 2, this value is approximately 1.75, which is al-
most in the middle of the gap. This example demon-
strates for a model three-state system the conspicuous
dependence of the sequential resonance condition upon
the electronic structure around the intermediate state.

Maximum Occupancy via Intermediate State

FIG. 5. Maximum occupancy transfered via the dynami-
cally populated intermediate state as a function of its energy.
Three-state resonance associated with sequential tunneling
mechanism occurs around FEj; ~ 0.25 when Vg = 1 and
Ey = 1.75 when Visp = 2. Tunneling energy was chosen as
-0.35 for the former case and -0.19 for the latter. Full lines
represent the exact results; Dashed lines represent those of
the 3SA(eq.(21)).

The 2SA cannot depict precisely the ET dynamics
via an intervening state when the system enters the se-
quential transfer regime where a large part of occupancy
goes through the middle state. A three-state approxima-
tion(3SA) has to be introduced

a4 | ¥o(t) Hip Hium Hpa p(t)
ih— U (t) | = | Higp Hign Higa | | Yu(®)
W A(t) Hip Hiu Hia Va(t)

(21)

where the effective three-state Hamiltonian matrix ele-
ments are obtained by using egs.(19) and (20).
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FIG. 6. Comparison of electronic propogation results
produced by the exact, 2SA and 3SA methods for the

tight-binding model system in the sequential transfer
regime. (a)Ey = 0.2,E%, = —034,EY, = —0.35

(b)Ea = 0.24, EZ, = —0.285, B3¢, = —0.28.

Fig. 6(a) shows that the 3SA can reproduce the exact
dynamics perfectly when Ejp; = 0.2. One can see that
in this case the 2SA can somewhat describe the transfer
dynamics between D and A with a slightly different tun-
neling energy, since the transfer dynamics between D and
A still resembles the sinusoidal behavior. But when Ejy
is increased to 0.24, resemblance to sinusoidal behavior
vanishes, as is shown in Fig. 6(b). The time evolution
cannot be attributed to a two-state mode. By compari-
son, the 3SA does much better, albeit its performance is
not as impressive as shown in Fig. 6(a). In Fig. 5, we also
show that the maximum population transfered through
the middle site M versus Fj; can be approximately repro-
duced by the three-state model. As expected, the 3SA
deteriorates when the localization of M weakens (Vg
becomes greater).

The above analysis is not merely for improving the
2SA. As was pointed out by Ulstrup and coworkers!2,
some of the most exciting chemical and biomolecular ET
systems involve more than two reaction centers. Multi-
step ET and dynamically populated intermediate states
("hot” electronic states) in such systems has become cen-
tral concepts in the new areas of ultrafast(femtosecond)
processes. Our MSR approach provides, from rigorous
electronic structure point of view, an effective multicen-

ter picture for such type of multi-channel ET reactions.

V. COMPUTATIONAL DETAILS

Fig. 7 shows the flowchart of our computer simulation.
Before we proceed to the details, we would like to clas-
sify three time scales at first. The first time scale is the
ET time steplength, which is the steplength used in inte-
grating the Schriédinger equation, denoted by dtgp; The
second refers to the MD time steplength, which is the
steplength chosen to integrate the classical equation of
motion for protein, denoted by étprp; The third is called
by us as the sampling steplength, which means the time
interval between two neighboring sample Hamiltonians
or sample conformations taken from a MD trajectory, de-
noted by dtsp. The relation for these three steplengths
is 0tgr < Otyrp < dtsp.

An important issue about the time steplength is how
short dtsp should be in order not to skip over the contri-
bution of the fastest motion of proteins to the ET dynam-
ics. It is known that harmonic vibrations of bond lengths
and angles generate the highest frequencies in proteins,
and the time scale for this type of motion is at the level of
femtoseconds'3. Based on tests for a small diglycine, we
found that the results of electronic dynamics with differ-
ent d0tgp converged when it approached a femtosecond.
Therefore, one femtosecond can be used as the sampling
steplength.
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FIG. 7. The flowchart of the computer simulation. In this
flowchart we assume that the integration of the Schrédinger
equation is implemented by using a predictor-corrector
method.

A. Molecular dynamics simulation for azurin

As has been pointed, we need to know the Hamiltonian,
overlap and NAC matrices of the protein as a function



of time. We assume that the Hamiltonian at any time is
simply the single-particle Hamiltonian derived from the
protein conformation at that time. Prior to obtaining
the above-mentioned matrices that guide the tunneling
electron during the transfer process, a series of conforma-
tions were produced from an equilibrium MD trajectory.
In this research, we employ the well established molec-
ular simulation package CHARMM to perform the MD
simulation for proteins.

The cystallographic structure of azurin** was taken
from the Brookhaven Protein Database. The force field
for the metalloprotein azurin, in addition to the general
parameters provided by CHARMM for common animo
acids, was taken from a paper by Voth and coworkers for
another blue copper protein plastocyanin'®. We modified
some of the force field parameters to keep the bipyramidal
geometry of the copper complex of azurin thermodynam-
ically stable.

In order to get more natural dynamics, we performed
solvent simulation for the whole azurin molecule, al-
though we did not actually include any water molecule
in our electronic structure calculations. Compared with
a less time-consuming vacuum simulation, the existence
of water simply makes the motion of the protein more
confined and therefore the predicted atomic fluctuations
will be smaller than those by a vacuum simulation.

To begin with, we prepared a cube of water, which
contains 20x20x20 unit cells. The length of the unix
cell was chosen according to the density of water under
room temperature and one atmospheric pressure. This
cube of water was equilibrated at 300 K for 10000 AKMA
time steps by standard Verlet algorithm using the peri-
odic boundary conditions. All bonds and angles were
shaken using the SHAKE command.

We put the azurin molecule, together with the crys-
tallographic water molecules, in the center of the equili-
brated water cube, and cut the cube into a sphere of a
radius 28A. A deformable stochastic boundary with a soft
boundary potential and a stochastic buffer region'® was
introduced to contain the water molecules in the sphere.
Any water molecule whose oxygen fell out of this sphere
was deleted. Also those whose oxygen had a distance
to the heavy atoms of the protein and crystallographic
water shorter than 2.8A were eliminated. All the wa-
ter molecules (including the crystallographic water) were
equilibrated with the protein being fixed for some time
in order for them to redistribute energetically favorable
around the protein.

The water sphere normally shrinked after some period
of equilibration, the tips of the protein might therefore
be exposed to vacuum. In order to avoid this, more wa-
ter was added to keep the whole protein in well solvated
condition. We did this in the following way: After a pe-
riod of equilibration, the program paused for filling up
the shrinkage and possible voids, the water cube (with a
different SEGment name) was used to overlay the whole
system, the new water molecules were concatenated with
the old water by the JOIN command. After that we
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rotated the new system 90° and repeated the same over-
laying procedure for two or three times. It was found
that rotating the system brought more chances for fill-
ing, as expected the number of water molecules added
to the solvent after each overlaying decreased when the
times of rotation increased. The new water molecules
were deposited in a new PDB file. We took the restart-
ing coordinates from this new structure file and those
for the protein and cystallographic water which were not
changed, reassigned initial velocities for all the atoms,
and equilibrated the new system. Checking the fluctu-
ations of kinetic energy, potential energy, boundary po-
tential and some geometries (e.g. bond lengths, bond
angles, and dihedral angles), we found that the system
had reached thermal equilibrium after 300 picoseconds of
equilibration.
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I I

[ 109Met 124Thr ]
I I
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1 1
FIG. 8. Animo acid sequence of the 8-sheet in azurin. The
dotted lines between the two strands stand for the hydrogen
bonds.

After equilibration, production trajectories started to
be created, with a time steplength of one femtosec-
ond. The whole protein is apparently too large for
time-dependent electronic structure calculations. But
in this paper we are interested in only the [-sheet por-
tion formed by the Cys''2-GIn!®” and Met!2!-Thr!'26 3-
strands (as is shown in Fig. 8), which has been the tar-
get of ET experiments. Therefore, we cut the (-sheet
residues from the whole azurin and deposited them into
a separate trajectory file while the simulation was being
carried out. Instead of a simple hydrogen atom substi-
tution, we applied the ACE and CT3 termini provided
by CHARMM’s topological input file to where a peptide
bond was ruptured due to the truncation. Assume that
we select a segment whose index runs from the n-th to
the m-th residue, after the structure is pruned, the coor-
dinates of C, CA and O in the n — 1 residue are given to
CY, CAY and OY in the ACE terminus, and those of N,
CA and HN in the m + 1 residue to NT, CAT and HNT
in the CT3 terminus. The coordinates of the remaining
six H atoms are determined by the HBUILD command
(therefore the resultant geometries are somehow energet-



ically minimized). No significant rotation of the three H
atoms around the axis perpendicular to the plane they
form and through the carbon atom (CAY or CAT) was
observed in both termini along the trajectory thus cre-
ated. This is important for a time-dependent calculation,
because a free rotating terminus, even being peripheral to
the tunneling pathways, can constitute a large boundary
perturbation, which may not be true in a real system.

B. Semiempircal electronic structure calculations

A large part of our simulation is to get the single-
particle Hamiltonian matrices along a MD trajectory. In
this research we employ both the extended-Hiickel(EH)
and complete neglect of differentail overlaps (CNDO)
methods'” to create the Hamiltonian matrices in the
AO basis. The EH code was taken from QCPE 571:Ex-
tended Hiickel Molecular, Crystal and Properties Pack-
age'®; while the CNDO/S code was taken from QCPE
408: Bond Orbitals in the Neglect of Differential Overlap
(BONDO) Approximation'®. In the former method, the
Hamiltonian is constructed directly from the overlap ma-
trix elements: The diagonal elements are the ionization
potentials of the atomic orbitals H;; = E; and the off-
diagonal elements are taken as H;; = (K/2)S;;(E; + Ej),
where K = 1.75 is the Hiickel constant. The latter
method starts with a Hamiltonian which contains the
primitive Hiickel term and Coulombic contributions and
requires a self-consistent field procedure. In our cal-
culations, convergence is regarded achieved if the en-
ergy difference between two adjacent iterations is smaller
than 5x107° hartree. In order to accelerate the iter-
ation, computation of a conformation utilizes the con-
verged density matrix of the last conformation, which was
only one femtosecond before, as an input for construct-
ing the initial Fock matrix (rather than constructing it
from scratch). The current conformation normally does
not differ drastically from the last one, since the pro-
tein structure changes little during a femtosecond. As
a result, the number of iteration steps needed to reach
self-consistence for each conformation can be reduced.

At present, we are unable to perform open-shell CNDO
calculations. Therefore, we cannot treat proteins with
metal ions as donor and acceptor at such a theoretical
level. (Due to the same computational reason, residues
with a positive charge is neutralized by removing a pro-
ton off.) So our donor and acceptor have to be chosen as
two orbitals from the protein’s electronic structure. And
for mimicing photoexcited states, the orbital energies of
these two orbitals have to be changed such that they fall
into the energy gap of the protein. We found that if we
did this in the AO basis, the bridge eigenstates would
be significantly perturbed (since an AO has very strong
couplings with other AQOs, particularly those belonging to
the same atom). Considering the usual assumption that
the intercalation of donor and acceptor should not affect

the electronic structure of the bridge too much, an AO is
not a well-defined donor or acceptor. Therefore, we em-
ployed the BO basis formed by using the NBO method.
Changing local energetics in the BO basis hardly changes
the bridge electronic structure. Additional advantages
for using the BO basis are that sometimes we may need
to distinguish electron and hole transfer and the BO ba-
sis provides an intuitive picture of chemical bonds which
enables us to view ET in a way more consistent with the
tunneling pathway model. In the following Subsection,
we shall discuss the NBO method.

C. Transformation to the natural bond orbital basis

Having obtained the overlap, Hamiltonian and density
matrices in the AO basis for an electronically saturated
system, the next step is to transform everything from the
AO to BO basis. Due to the localization nature of pro-
tein electronic structure, the major parts of the electronic
wave functions of an atom seldom go far, rather they are
always restricted to a range that contains a few neigh-
boring atoms. (And thus chemical bonds are formed.
Of course there are a few exceptions in which the elec-
tronic wave functions are delocalized, as we shall discuss
later.) The localization character can be revealed if one
diagonalizes the subblocks of the density matrix associ-
ated with a specific group of atoms, e.g., a pair of atoms.
This thought was systematically developed into the NBO
method. The idea of the NBO is to use those nearly fully
occupied eigenstates of the subblocks in the density ma-
trix involving relevant atoms to represent the lone pairs
(LPs) of the atoms and the bicentral bonds between two
atoms, and construct the corresponding antibonds for the
known bonds, considering appropriate polarization.

A deficiency for the original BONDO program is that
it is unable to handle animo acid residues that contain
aromatic rings. The sub density matrix diagonalization
scheme can find three fully occupied bonds if we diagonal-
ize the subblock associated with the 24 AQO’s belonging
to the six carbon atoms around the aromatic ring, after
depleting all the known ¢ bonds, but the eigenvectors of
these three eigenstates do not seem to form chemically
reasonable bonds, and they are not numerically stable,
i.e., they change somehow randomly from one conforma-
tion to another.

We describe here a method to construct the correct
delocalized bonds for aromatic rings. Before construct-
ing these delocalized orbitals, we find out all the possible
LPs and bond pairs, deplete them from the density ma-
trix, and pick up the indices of atoms which form an aro-
matic group. Then we take the three sps hybrids of each
carbon of each aromatic ring, and build the p, orbitals
from them according to the condition of orthonormality.
All the hybrids including these newly built p.’s are sym-
metrically orthogonalized subsequently, and the bonding
and antibonding orbitals other than the aromatic delo-



calized states are deposited in the transformation matrix
(TM). The aromatic delocalized orbitals are formed us-
ing appropriate symmetry adapted linear combinations
(SALCs) of the six 2p(m) valence orbitals and then de-
posited to the TM. In the TM, they are reordered to be
prior to the LPs and right after the bond pairs and la-
beled as PB and PB*. This new TM is used to transform
the density matrix and Hamiltonian from the AO to the
BO basis. For all animo acids whose side chain has an
aromatic ring, the diagonal elements of the correspond-
ing subblocks of the BO density matrix are found very
close to 2(fully occupied) for the three 7°, while those of
the three 7* orbitals are very small. (For the benzene
molecule which is highly symmetric, our method works
perfectly: The occupancies of the three 7° are found al-
most 2 and those of 7* are found almost null.) This
means that the delocalized bonds have been successfully
formed. As expected, the antibond densities of low-lying
m* orbitals tend to be larger than those of others.

Fig. 9 shows a typical chemical bond energy pro-
file (energies plotted against orbital indices) for two
residues(ACE+Gly+CT3 and ACE+Phe+CT3) , calcu-
lated by using the CNDO method. The bond ener-
gies shown are the average values over two picoseconds,
whereas the corresponding fluctuctions are shown in the
lower panel. The bridge gap is calculated to be about
12 eV. It can be seen that: (1) The 7 and 7* bonds are
energetically closer to the gap; (2) The same chemical
group has approximately the same bond energies for its
bonds which do not participate interactions with the ex-
terior, e.g. the C=0 double bonds and the two ACE
(or CT3) termini, hence we can identify different sort of
groups from the energy profile. Moreover, we would like
to point out that the upper panel of Fig. 9 presents the
static energy disorder of the protein’s electronic struc-
ture, whereas the lower panel gives the information about
the amplitude of the dynamic energy disorder, which
sometimes refers to the time dependence of the energy
profile?°. Energy disorder is an important concept in the

theory of electron transport in molecule wires!.
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FIG. 9. Energy disorder profile of chemical bonds for two
residues Gly'?® and Phe'!°, obtained by the NBO method.
The upper panel shows the average orbital energies(static en-
ergy disorder), the lower panel shows the corresponding root
mean square fluctuations (dynamic energy disorder). The
Ca-H, bonds of the two residues are taken as the donor and
acceptor. Their energies are lifted into the gap and kept reso-
nant. "BD” stands for bond pairs, ”BD*” for antibond pairs,
"LP” for lone pairs, ”PB” for aromatic = bonds, and "PB*”
for aromatic * antibonds.

Fig. 9 shows that the bond energies are thermodynam-
ically stable, but it does not describe the detailed bond
structure. The full information about the chemical bonds
defined by the NBO method is stored in the TM between
the BO and AO bases. Let us assume the following vec-
tor represents a bond between two second row elements
K and L: (0,.,CK,CK CK CK . CL CE CE CE, . 0)
(a row in the TM). All the irrelevant coefficients are zero
except those corresponding to the two atoms, CiK ’L(i =
1,2,3,4). The polarization factors for the two atoms are
in fact pre = Y1, (CK)? and p;, = Y+, (CF)?, while
the normalization condition requires that px + pr = 1.
We know that the molecular orbital has to be a lin-
ear combination of two somewhat distorted hybrid or-
bitals. In order to check if the hybrids are correct, the
program renormalises for each individual atom the co-
efficents to one. For convenience we thereafter drop off
the superscripts K and denote the renormalized coeffi-
cients as (C1,C2,Cs,Cy). The p-character and orien-
tation angles for an atomic hybrid are defined as P =

1/C? —1,0 = arctan(y/1 — C2/C4), ¢ = arctan(C3/Cs),
where C~'2, C’g, C~’4 are the renormalized coefficients (to a
unit vector), i.e., C; = C;/y/1 — C?. We plot in Fig. 10
the fluctuations of polarization factors, p-characters and
hybrid orientation angles of some typical bonds.
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FIG. 10. Fluctuations of chemical bonds obtained
by the NBO method. (a) The peptide bond be-
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tween Phe and Phe''!; (b) N(Phe''!)-HN(Phe''!);
(c)N(Phe!'')-CA(Phe''!); (d)A o bond in aromatic ring:
CD1(Phe'!")-CE1(Phe''").

Two major technical problems of the NBO method ap-
plied to a time-dependent study have to be emphasized
here.

The first one is the bond orientation problem. As we
know, the NBO method finds bonds by diagonalizations
of individual subblocks. When it determines a bond, it
does not ”feel” the existence of the other subblocks. This
does not result in a mistake for a single conformation
computation, but in the time-dependent case it may lead
to the following problem.

Imagine two bonds A and B which are associated with
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different, subblocks but close enough to have a consider-
ably big coupling, they are found by the NBO procedure
as |A) (0,., AK AK AK AK AL AL AL AL 0),
|B> = (07'7B{M7Bé\l7Bé\l7Bi\l7'7B{V7BéV7BéV7BiV7'7 )7
where it is implied that bond A is formed between two
second-row atoms K and L, while bond B between M
and N. Diagonalization of subblocks K ® L and M ® N
gives two options which have opposite signs: |A), —|A)
and |B), —|B). The diagonalization procedure chooses
the one which satisfies a probably arbitary criterion, say,
the s component of the first atom must be positive, for
a given conformation.

Now assume that one of the two bonds has small s char-
acters (e.g. m bonds), |AK| <« max(|AK|,|AK],|AK)),
|AT| <« max(|]AL|, |AY|,|A%|). Imagine for the next con-
formation at time t + ¢, due to the local perturbation
around K and L, the components evolve from Af(t) to
ALt + ot) ANt + 6ANT = K, L;yi = 1,2,3,4). If
the time step ¢ is small or the structural fluctuations are
small, the increments are small |[§4f] <« 1. Although
they may not be able to change the signs of the big
p components, they can change the signs of AK and
AL since they are supposed to be small. Let us as-
sume that AX(¢#) > 0 while AX(t + 6t) < 0, it there-
fore has to be flipped, AKX (t + dt) — —AK(¢t + 6t), and
as a result, the three p components of atom K and
all components of atom L are flipped simultaneously,
Af(t+6t) - —AF(t +6t)(i = 2,3,4); AX(t + 0t) —
— AL (t+06t)(j = 1,2,3,4). While this is not a big change
for AKX and A¥, it is a big and perhaps unphysical change
for the p components. On the other hand, let us assume
that the local perturbation around M and N does not
create an increment which is big enough to upset the
sign of BM. Everything continues smoothly for the B
bond. Now, let us examine the coupling between the two
bonds. At time ¢, it is Hap(t) = (A(t)|H(t)|B(t)), at
time ¢ + d¢, it becomes Hap(t + 6t) = (A(t + 6t)|H(t +
0t)|B(t + 0t)) = (—A(t) + 0A|H(t + 6t)|B(t) + 6B)). We
see Hap(t+0t) ~ —H ap(t), if the fluctuations are small.
That is to say, the consequence of such a sign switching
for eigenvectors is a sign switching for the corresponding
couplings in the NBO Fock matrix. For aromatic rings,
the SALCs will mispresent the delocalized state if the six
p; orbitals do not point to the same direction. As a re-
sult, large occupanies in the antibonding orbitals will be
observed.

The solution to this problem is to choose a reference
conformation for which the NBO creates the bond struc-
ture correctly, save the orientations of all bonds into an
information matrix, and impose these orientations to all
bonds of all conformations involved in the calculation.
For systems containing aromatic rings, one must make
sure that there exists no phase difference among all the
atomic hybrids of the six carbon atoms. This idea will
presumably fail if there is a structural transformation or
bond reformation, which is not very likely for a protein
in thermal equillibrium.



The second problem is the degeneracy problem. The
degeneracy problem arises when in a single subblock
there are two bonds which are both fully populated. The
diagonalization procedure may not be able to distinguish
them: The eigenstates thus created may be mixed states.
The C=0 double bond and O LPs in each amino acid are
such cases. Diagonalization of the sub density matrix of
C=0 cannot single out the o,7 bonds. Therefore, if we
transform the Hamiltonian matrices of consecutive con-
formations along a MD trajectory to the BO basis, very
large fluctuations of Hamiltonian matrix elements may
be observed. This type of false fluctuations of Hamilto-
nian may influence the numerical stability of electronic
dynamics.

Different from the problem of aromatic ring, which is a
degeneracy problem too, the o, 7 bonds cannot be built
in a similiar way. Although we have known two sps hy-
brids of C which take part in the formations of C-N and
C-C, bonds, the other sp» and the p. orbitals cannot
be constructed from the two known spy’s by using only
the condition of orthonormality. The method to repair
this problem is to diagonalize the corresponding subblock
of the Hamiltonian matrix, because o, 7 bonds are not
energetically degenerate. The eigenstates thus obtained
would represent more correctly the bonds, and fluctuate
less.

The same problem exists for the two LPs of oxygen
of the CO group. Diagonalization of the one-center sub-
block belonging to the oxygen sometimes could not dis-
tinguish the two LPs very well. If we diagonalize the
corresponding subblock of the Hamiltonian matrix, the
following two states will be found ¢rp; = p;,d)Lpg =

0.77s + 0.64plx, where the prime means the orbitals have
been transformed to a local coordinate system. p; is
perpendicular to the plane formed by the o and 7 bonds
of the C=0 pair, which point in the local coordinate
system to z' and 2’ respectively. If we further assume
that the two LPs should be equivalent no matter how
asymmetric the environment may be, we can build two
equivalent LPs by simply taking linear combinations of
érp1 and ¢rpa: Yrp1 = (1/vV2)(¢rp1 + drp2), Yrp2 =
(1/\/§) (¢rp1 — ¢rp2). The subblock in the transformed
Hamiltonian matrix will have a nonzero off-diagonal el-
ement, which stands for the strong Coulombic repulsion
between the two LPs.

When we transform from the AO basis the Schrodinger
equation into the BO basis, the NAC matrices have to
be transformed as well

KEO(t) = 3 Tu®) [Ta(0S4°(0) + Tu (KO (1))

(22)

where T, (t) is the TM element between the k-th BO and
i-th AO states at time ¢, and Tj;(¢) is the first-order time
derivative of T (t).

12

D. The integrator

The time-dependent Schrédinger equation is integrated
by using either the Gear predictor-corrector method or
the classical Runge-Kutta method. The algorithms of the
integrators require that H(t), S(t) and K(t) be known
at arbitary time ¢. It will be extremely time-consuming
to calculate using quantum chemical approaches these
matrices for each ET time step since dtgr is usually of
the magnitude 1073 femtosecond in order not to diverge
while the interested time scale for our computation is
normally at the level of picoseconds (dependent on the
Landau-Zener time). On the other hand, since the differ-
ence of the protein conformations may be small within a
few 0t g7 so that replacing the intermediate ones by inter-
polated ones may not result in a pronounced difference of
electronic dynamics, it does not seem necessary to calcu-
late the matrices every ET step. Rather we take a series
of conformational snapshots from a MD trajectory every
dtsp, calculate only for these sample conformations the
matrices H,, Sy, K,, using quantum chemical methods
while get V() at arbitary time ¢ using the cubic spline
interpolation method.

Numerical error is an important issue about the inte-
grator that is related to the long-range ET, which nor-
mally involves a system with hundreds or even thousands
of orbitals and a very weak Tps. Accumulating nu-
merical error is inevitable for any integration method.
The question though is, if the transfer probability within
the Landau-Zener time goes smaller than the average er-
ror |(¥(t)|¥(t)) — 1|/N, say 10~°, due to a small Tpa,
how can we distinguish it from numerical error? Indeed
this question may point to a serious limit of any time-
dependent ET simulation. That is when error propoga-
tion runs faster than electronic propogation to a very
weak coupled state. In the case that there is no imme-
diate answer to the question, we guess that less numer-
ical error is allocated to states which gain smaller occu-
pancies, namely, the distribution of occupancies is not
affected too much by numerical error. Albeit we cannot
prove it in a dynamic case, we can prove that this is basi-
cally true in a static case (while numerical error may have
nothing to do with the time-dependence of Hamiltonian
etc.), by comparing the result given by the integrator and
that by the following analytical formula

2

Ppa(t) = | exp (=i&nt/h) (A]¥,)(,|D) (23)

where &, is the eigenenergy of the n-th eigenstate, ¥,
is the corresponding eigenvector. We found that when
Tp 4 is of the magnitude of 1075 eV, the results given by
the two independent methods were almost the same (the
latter method has much less numerical error and may be
regarded as the strict result).



VI. RESULTS AND DISCUSSION

In this Section, we present the computer simulation
results for ET dynamics in azurin. These results were
obtained on the basis of two different levels of approx-
imations (Tab. I). The first level possesses higher ac-
curacy in electronic structure calculation, but it neglects
differential overlaps and hence retarded(advanced) over-
laps. In accordance with this, NACs are ignored in the
subsequent electronic dynamics calculation. The second
level is less precise in electronic structure calculation but
it is on nonorthogonal basis and NACs are incorporated
in electronic dynamics calculation.

With the framework of the second level, the effect of
NACs on ET dynamics can be proven trivial as long as
unphysical large fluctuations of basis set are inhibitted.
This sort of false fluctuation does not exist in a time-
dependent calculation in the AO basis. (In the AO basis,
one can prove that a number of NACs turn out to be
zero, see Appendix B.) As discussed carefully in Section
V C, it originates from the NBO method with which we
transform our simulation into the BO basis. As a matter
of fact, one can estimate the upper bound for Kj;; ac-
cording to eq.(10). In a normalized basis, the maximum
value for the right hand side of eq.(10) is 1/2dt, so the
magnitude of the NAC is i/(2xfemtosecond)= 2 eV. In
reality, the difference of retarded and advanced overlaps
is much less than 1, since a protein moves very little dur-
ing a femtosecond (assuming that there is no ultrafast
structural transition).

A major shortcoming of the EH method is that it
severely underestimates the gap: The gap predicted by
it is approximately 4 eV (ranging from -12 eV~ -8 eV),
which disagrees with both higher level ab initio results
and experimental results. By performing NBO analysis
for the density matrix and Hamiltonian matrix given by
the EH method, we found that the eigenstates falling into
the interval between -12 eV and -2 eV are mainly con-
tributed by the 7*s, and the populations residing at the
7*s are much bigger than those at the o*s (e.g. the pop-
ulations for C=0 antibonds are about 0.40, compared
with normally less than 0.05 for o*s). Therefore, a sim-
ple trick to remedy the EH method is to reparametrize
it in the BO basis, namely, to lift the orbital energies of
7m*s out of the gap (We did this by adding 12 eV to the
orbital energies of 7*s). The coupling matrix elements
between the 7*s and others need not to change. Rediag-
onalizing the modified Hamiltonian matrix, we obtain a
gap ranging from -12 eV to -2 eV, compared with -11 eV
~ 1 eV predicted by the CNDO method.

TABLE I. Two levels of computer simulation.

Level Orthonormality = Method Nonadibatic Coupling
1 Orthonormal CNDO/S Ignored
2 Nonorthonormal EH Included

13

A. Protein electronic structure calculations

Since in this study we simply pick up two orbitals from
the electronic structure of proteins as artificial donor and
acceptor (in order to reduce the perturbation of such a
choice to the side chains of the animo acids which are to
accomodate our artificial donor and acceptor to the min-
imum, we select the C,-H, bonds as donor and acceptor;
we hope this treatment would not jeopardize the general
conclusions made in this research for dynamic ET reac-
tions), the electronic structure of the bridge has to be
explored in order to decide reasonable values for the en-
ergies of donor and acceptor and tunneling energy, which
are normally inside the gap. Importantly, resonance of
the energy level of donor and acceptor with any of the
bridge eigenstates should be cautiously avoided (other-
wise the electronic propogation will behave like transport
in conductors rather than tunneling). For a fluctuating
protein, care must be taken to prevent thermal motion
from injecting electron into the bridge by crossing of ei-
ther highest occupied molecular orbital (HOMO) or low-
est unoccupied molecular orbital (LUMO) of the bridge
with the energy levels of donor and acceptor. Fig. 11
shows typical thermal fluctuations of bridge HOMO and
LUMO. The fluctuation amplitudes are around 0.4 eV.
This implies that the energy level of donor and acceptor
should be at least 0.2 eV above the average HOMO or
below the average LUMO.

Bidge LUMO (eV)

Bidge HOMO (eV)

FIG. 11. Shown are the fluctuations of bridge HOMO and
LUMO in a 500 fs MD segment, calculated by using the
CNDO method. Donor was chosen as the C,-H, bond of
Cys112 or Met'?'. The C.-H, bonds of other residues were
chosen as the acceptor. The bridge is the remainder of the
electronic structure excluding the donor-acceptor orbital pair.
The HOMO and LUMO of different bridges are indistinguish-
able in the figure.

It was also found that bridge HOMO and LUMO were
not affected too much by the choice of donor and accep-
tor. In the calculations for Fig. 11, we have chosen the
Co-H, bond of Cys't? or Met'?! as the donor and se-
lected other C,-H, bonds as the acceptors, the results
of bridge HOMO and LUMO are virtually the same (to
a few decimals). The invariance of bridge gap to the



choice of donor and acceptor comes from the following
facts: First, in the BO basis, the Hamiltonian matrix is
nearly diagonal; Second, the energies of Cy-H, bonds
are more or less close to each other. Eleminating such
a pair of orbitals (out of a few hundreds) from such a
system does not actually change the eigenenergies of the
remaining states.

In(TDA)

15 |

20 |

10 20
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FIG. 12. Tpa exponentially decays along the 3-sheet. For
strand 107-112, donor: Cys!!?; acceptors: Phe!!!) Phe!l0,
Met'%, Tyr'® and GIn'°". For strand 121-126, donor:
Met!2!; acceptors: Lys'??, Gly?®, Thr'?*| Leu!?® and Thr!?®.
The tunneling energy was chosen as -10 eV. Calculated by the
CNDO method, averaged over 0.5 picosecond.

The effective electronic coupling, Tp 4, falls off rapidly
with respect to the separation distance between donor
and acceptor Rpa. The decay behavior is always de-
scribed by an exponential function

TDA X exp (—ﬁRDA/Q) (24)
Experiments® revealed that for 3-sheet the Cut to Ru®+
distance-decay constant 3 is about 1.1 A=, Our CNDO
calculations show that for artificial donors and acceptors
the average constant (3) ~ 1.5 ~ 1.6 A1 if the tunneling
energy is chosen as -10 eV. (Fig. 12).

B. Effect of bridge dynamics on electron transfer

To exclude the effect of donor and acceptor motion,
we freeze the donor and acceptor energies and maintain
them in the resonance regime. In such a way, the ET
dynamics is purely assisted by the bridge motion and de-
termined by its dynamical behavior. The effect of bridge
dynamics can be investigated in the following way: (a)
Select a segment of MD trajectory, find the resonace con-
dition for donor and acceptor and calculate Tp 4 for the
first conformation; (b) Put an electron on the donor site
at time t=0, solve the time-dependent Schrédinger equa-
tion eq.(6) in accordance with the Hamiltonians etc. ob-
tained for each conformation, get the transfer probabil-
ity Ppa(t); (c) Assume that from the starting point of
the selected trajectory segment on, the system dynamics
is suddenly frozen (imagine this procedure as something
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like rapid quenching), in other words, the subsequent con-
formations are identical to the first one, repeat (b) (the
transfer probability thus obtained is denoted by PR (t));
(d) Do the TD2SA, namely, project the Hamiltonians etc.
to a two-state form, and integrate the two-state quan-
tum equation of motion eq.(17) (the transfer probability
thus obtained is denoted by P25 (t)). It is expected that
PR (t) will exhibit sinusoidal behavior since donor and
acceptor have been tuned into resonance and there exists
no force to push them off.

Level 1: CNDO 112Cys-111Phe

i\ Toosa
L

Fime (flemidseconds)”

FIG. 13. Strong coupling cases (\/(T3,) ~ 1072 eV).
(a) Level 1 calculation: Cys''?(D)-Phe'!*(A). Donor and
acceptor energies are about -10 eV (vicinal to the bridge
HOMO), the tunneling energy is -9 eV. (b) Level 2 calcula-
tion: Met'*!(D)-Lys'?*(A). Donor and acceptor energies are
about -11 eV (vicinal to the bridge HOMO), the tunneling
energy is -10 eV. Ppa(t), P34 (t) and PJ’ (t) are denoted by
full lines, dashed lines and long dashed lines, respectively.
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FIG. 14. (T%,) ~ 1072 eV. (a) Level 1 calculation:
Cys'*2-Phe'!?. Donor and acceptor energies are about -10
eV, the tunneling energy is -9 eV. (b) Level 2 calculation:
Met'?!-Gly*?3. Donor and acceptor energies are about -11 eV,
the tunneling energy is -10 eV. Ppa(t), P (t) and P, (t)
are denoted by dashed lines, full lines and long dashed lines,
respectively.
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FIG. 15. \/(T3,) ~ 107* eV. (a) Level 1 calculation:
Cys'2-Gly!'?®. Donor and acceptor energies are about -10
eV, the tunneling energy is -9.5 eV. (b) Level 2 calculation:
Met!2!-Thr!?*. Donor and acceptor energies are about -11 eV,
the tunneling energy is -10 eV. Ppa(t), PF4(t) and P (t)
are denoted by dashed lines, full lines and long dashed lines,
respectively.

Shown in Figs. 13, 14 and 15 are the ET probilities
calculated by the exact method and the TD2SA method
in the cases of different coupling strength at both com-
putational levels. In Fig. 13, the donor and acceptor are
so close that the direct interaction between them Hp 4
constitutes a large part of the total coupling Hp4, which
means that the through-space tunneling pathway is im-
portant. It can be seen from the figures that Ppa(t)
deviates from P} (t) after some time, whereas P2, (t)
roughly reproduces Pp4(t) within a few hundred fem-
toseconds.

The significant difference between Ppa(t) and P}’ (t)
comes exactly from the effect of bridge dynamics on the
ET dynamics, whereas the agreement between Pp4(t)
and P%%,(t) represents how well a ET dynamics can be
approximated by a simple two-state picture. In fact,
the two-state picture explains why Pp4(t) differs from
PAY(t). In the two-state picture, donor and acceptor,
now ”dressed” with backscattering effect Tphp(t) and
Ta4(t), fluctuate around the resonance energy levels (see
the inset of Fig. 16). Such a two-state system certainly
exhibits transfer behavior different from a sinusoidal one,
which occurs when the system is resonant all along. We
performed a series of similiar simulations on various MD
trajectories and found that, for Tps between 1072 eV
and 10~* eV and within typical Landau-Zener time (up
to a few picoseonds), there is no evidence that the bridge
dynamics would always increase or decrease the transfer
probability. For example, in Fig. 14, one can see some-
times Ppa(t) is smaller than P}’ () but sometimes it is
greater. This is somehow counterintuitive since it is read-
ily surmised that a system remaining in resonance should
have more chances to transfer than a system shuttling be-
tween on-resonance and off-resonance has. It hints that,
the thermodynamics of an ET structure might be as im-
portant as its (static) energetics in determining its ET
performance on specific conditions.

15

A

FIG. 16. The TD2SA can be improved by changing the
tunneling energy from time to time (results of level 1 calcu-
lation). The dashed line is the result predicted by a TD2SA
with a constant tunneling energy throughout the simulation,
the solid line is that by a TD2SA with a variable tunneling
energy, which almost reproduces the exact dynamics. The
stair steps denote the change of tunneling energy. Shown in
the inset is the fluctuation of the effective donor-acceptor en-
ergy difference, Hpp(t) — Haa(t), which is equivalent to the
effect of multiple Landau-Zener crossing of some sort.

The TD2SA with a constant tunneling energy normally
fails after a few hundred femtoseconds, but we found that
by adjusting the tunneling energy E one would be able
to improve the TD2SA if the system is not too coherent.
Fig. 16 shows that by piecewisely tuning E, the TD2SA
can reproduce unambiguously better the exact dynami-
cal behavior. This leads to our conjecture that, the tun-
neling dynamics of a complicated system can always be
described by the concise picture of TD2SA, provided that
the time course of the tunneling energy is appropriately
set. Hence the major task for a successful TD2SA may
be the search of E(t). At present, we find E(t) by sim-
ply using the trial-error method. The result illustrated
in Fig. 16 does not mean that E(t) should necessarily
follow a stepped route.

C. Dynamics of electron transfer between vibrating
donor and acceptor

In the last Subsection we studied ET between frozen
donor and acceptor and concluded that the TD2SA was
valid. In this Subsection, we shall examine if the TD2SA
is still valid in the case that donor and acceptor vibrate
with natural frequencies. By the words "natural frequen-
cies” we mean that the fluctuations of donor and accep-
tor energies are fully kept except that at the beginning
of the simulation they are artificially ”excited” into the
gap. Like in the last Subsection, all the simulations be-
gin with an initial condition that the donor site has an
electron at time ¢=0.

In such cases, both the donor that initially carries the
electron and the acceptor that is to receive the elec-
tron are moving. On one hand, since the system is in
equilibrium, the donor and acceptor energies have many
chances to cross (multiple Landau-Zener crossing). On
the other hand, the resonance condition for donor and



acceptor does not make sense any more since it is only
instantly satisfied in a vibrational period. In most time
donor and acceptor are off-resonant. In the two-state
picture, the fluctuations of the effective donor and ac-
ceptor energies are composed of those of Ep(t),E 4(t) and
Tpp(t),Taa(t). In the weakly-coupled limit, the relative
energy level shift induced by the backscattering effect,
Tpp(t) —Taa(t), is normally believed to be much smaller
than that caused by orbital fluctuations, Ep(t) — E(t).
When the couplings turn stronger, the backscattering ef-
fect will turn out to be more important.

(a)
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FIG. 17. Eletron transfer dynamics between vibrating
donor and acceptor for /(T3 ,) ~1072 and 10™* eV, respec-
tively (level 1 calculations). Shown in the upper panels of
(a) and (b) are comparison of results in the absence of bridge
motion and those in the presence of bridge motion (exact).
Shown in the lower panels are comparison of the exact results
with those by the TD2SA with a constant tunneling energy
and variable tunneling energies. The inset in (b) shows typical
temporal behavior of Ep(t) — Ea(t).

Within the current framework, the effect of protein
dynamics on ET consists of the effect from donor and ac-
ceptor motion and that from bridge motion. Freezing the
bridge and carrying out simulation with only donor and
acceptor moving can help us examine the latter effect.
In the upper panels of Fig. 17 (a)(b) we show the com-
parisons of such results with the exact ones. The differ-
ences between them imply that even though the motion

16

of donor and acceptor themselves looks overwhelming,
the delicate effect from bridge motion can be important
in the time scale of up to a few picoseconds.

In the lower panel of Fig. 17 (a)(b), we show that the
TD2SA with appropriately chosen time course of tunnel-
ing energy does well in reproducing the exact dynamics.
Our experience based on a series of simulations suggests
that it seems more difficult to find the right time course
of tunneling energy that enables the TD2SA to repro-
duce the exact dynamics in the presence of donor and
acceptor motion than in the absence of donor and accep-
tor motion (the case in Subsection VIB). We conjecture
that the flexibility of donor and acceptor energies might
result in the flexibility of the tunneling energy, which as a
consequence increases the difficulty of finding the correct
E(t).

D. Three-center electron transfer dynamics

In Section IV we have shown that the ET dynamics
of a static model three-center system can be reproduced
by a 3SA. Here we would like to strengthen the effective
three-state picture by showing that the validity of the
3SA in reproducing the exact ET dynamics holds in the
time-dependent case.

We select three C,-H, bonds along the [-sheet
as the three redox centers and calculate the transfer
probabilities Ppyy(t)(donor to intermediate state) and
Ppa(t)(donor to acceptor). In all simulations for three-
center systems, none of the three redox centers is frozen,
everything else is left as produced by the CHARMM and
electronic structure computations except that we delib-
erately put D, M and A at the same energy level into
the gap for the initial conformation, like we have done
for the two-center systems in Subsection VIC. To imple-
ment the TD3SA, we apply the three-center projection
and solve eq. (21).

(a)




FIG. 18. Three-center ET dynamics in two systems (level
1). The dashed lines are exact results, whereas the full lines
are TD3SA results. Tunneling energy is not changed through-
out the period shown in the figures.

The simulations started with an initial condition on
which the energies of the donor, the intermediate state,
and the acceptor were all set to be -10 eV and an electron
was introduced to the donor site. It is shown in Fig. 18
that for two three-center systems the TD3SA is basically
able to describe the dynamical behavior of the systems
for a certain length of time.

VII. CONCLUDING REMARKS

We have performed systematical computer simulations
for ET dynamics in fluctuating protein. Based on the
simulation results, we have found that it is not appro-
priate to ignore the effect of protein dynamics on elec-
tronic tunneling dynamics. We introduce an analogue of
the well-known static two-state approximation, the time-
dependent two-state approximation (and three-state ap-
proximation if three-center ET reaction is involved), and
show that such a simple approximation is capable of re-
producing the exact ET dynamics of the whole protein.
Although we also have pointed out some issues which
might be unaware before, for example, the importance of
the backscattering matrix elements, it remains an open
question how to incorporate these dynamic factors into
the ET rate theory.
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APPENDIX A

If Hpp and Haa are off-resonant and the two-state
Hamiltonian is time-independent, Hpp(t) Hpp,
Haa(t) = Haa, and Hpa(t) = Hpa, we have an an-
alytical solution for the transfer probability

(K(t —to)

2h
where 6 = Hpp — Haa, K = /6% +4H%, 4, Np(to) and

Na(to) are the occupancies on the donor and acceptor

4HE 4 .
PDA(t) = ND(to) KLZ)A SlIl2

K(t —to)

+N4(to) cos? ( o7

(A1)
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sites at time tg, respectively. The two terms in the right
hand side of eq.(A1l) represent forward and back elec-
tron transfer. (Surprisingly the amplitude for the back
electron transfer is independent on the driving force.)
Eq.(A1l) shows that in static case the backscatterings
Tpp and T4x may affect the maximum transfer prob-
ability, which equals 4H% ,/[(Hpp — Haa)? + 4H2 4]
Since it is Hpp — Haa = Hpp — Haa + Tpp — Tan
that actually determines Ppa(t), Tpp —Taa may either
reduce or enlarge the effective D-A energy difference and
therefore enhance or weaken the ET rate. In the static
case, only when § = 0 can a full tunneling occur. The
smaller 6 /Hpa is, the greater the percentage of tunnel-
ing is. Since the Hamiltonian is static, the energy is
conserved E(t) = U5 () p(t)Hpp + 5 ()T a(t)Han +
(BH () TaA()+Tp ()T ()| Hpa = Hpp. From the ener-
getic point of view, partial tunneling is easily understood:
The conservation law of energy would be violated if an
electron were fully transfered to the acceptor.

APPENDIX B

The NACs between two distinct 2p orbitals vanish:
Kpmpy (t)= prpz (t) = Ky p. (t) =0.
Proof. Select p,, p., rewrite K,_,_ as

Kpmpz (t) = Z Voz (pz |aozpz>

a=x,yY,z

(B1)
where V, is the a component of the velocity of the atom.
(P2]0:p2) = }%(1/25)(@% (z,y,2)|p:(z + 6,9, 2))
—(pe(@,y, 2)|p:(z — 6,9, 2)))

(p2|Oyp2) = lim (1/26)((pz (2, y, 2)|p:(2,y + 6, 2))

—(pz(x,y,2)|pz(a:,y - 6) Z)))

(pl0:p2) = 1im (1/20) (pa (2,1, 2) p (2, 5,2 + )

—(pe(,y, 2)|p:(,y, 2 = )))

(pI (1’, Y, Z)|p2(m+6) Y, Z)> = <p2’ (ZI, y’> 1")|pr (Z,+6> y,> xl»
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3 do'

47

= (r')er'/ sin 0’ d6’
0 0 0

xRy, (r'\Ry , (v/(r')2 + 62 + 2r'd cos 0') cos 0



" ' sin @’ cos ¢’ _
V()2 + 6% + 2r'5 cos 6 B

(Pe(,y, 2)Ip=(2,y+0,2)) = (por (2", 2", 4" ) Dy (2", 2'+0,9"))

3 [e's) T 27T
= — (r')2dr'/ sint‘)’dﬁ'/ dg¢'
4 o 0 0

xRy, (") Rp , (\/(r')? + 62 + 2r'6 cos 0') sin ' cos ¢!

" ' sin 6’ sin ¢’ .
V()2 + 6% +2r'§ cos 6

(pz(ﬂfay,z)|17z(93,y,z + 5)) = i/ T'2d7'/ sin 6df
ar /o 0

2m
X / doR,_ (r)Rp. (\/1“2 + 02+ 2rd cosf)sinf cos ¢
0

o rcosf + 6 B
V2 + 062+ 2r6cosh

Therefore, K, p. (t) = 0. Q.E.D.
One can also see that the NACs between s and p or-
bitals are nonzero.
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