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A central challenge of protein electron transfer theory is to
understand how protein dynamics a�ects electronic tunneling
from donor to acceptor� We studied this problem by use of
computer simulation method� The central result is that elec�
tron transfer dynamics can be described by a time�dependent
version of the two�state approximation� which amounts to
the solution of a time�dependent Schr�odinger equation drived
by a time series of e�ective two�state Hamiltonians yielded
by applying L�owdin�s partitioning technique to the Hamil�
tonian of the whole system� obtained by using semiempirical
all�valence�electron quantum chemical methods� for a series of
conformations taken consecutively from an equilibriummolec�
ular dynamics trajectory of the studied protein�

I� INTRODUCTION

In weakly coupled donor�acceptor systems� the rate of
electron transfer�ET� reactions is given by the golden rule

kET �
��

	h
jTDAj��F�C�� �
�

where TDA is the e�ective electronic coupling matrix el�
ement between the donor and acceptor localized states
and �F�C�� is the thermally weighted Frank�Condon over�
lap factor between donor and acceptor�s nuclear vibronic
manifolds� In an orthogonal basis� TDA can be given by
Larsson�s equation

TDA�E� �
X
bi�bj

HDbi

�
�EIb �Hb���

�
bibj

HbjA ���

where bi� bj are localized bridge states that couple di�
rectly to donor and acceptor through the Hamiltonian
matrix elements HDbi and HAbj � H

b is the bridge Hamil�

tonian� Ib is a unity matrix which has the same dimension
with the bridge Hamiltonian� and E is the tunneling en�
ergy� A theoretical issue for long�range ET in proteins is
the reliable calculation of TDA� and of more importance�
how it is controlled by the structural motif of the medi�
ate bridge �this is interesting because of its relevance to
the engineering of ET��� A tunneling pathway model has
been developed by Beratan� Betts and Onuchic� to de�
scribe how the protein environment may in
uence TDA�
In their model� the intervening structure between donor
and acceptor is decomposed into subunits linked by co�
valent bonds� hydrogen bonds� and through�space inter�
actions�van der Waals contacts�� Each link is associated
with a decay factor� characterizing the decay of coupling
strength with respect to length of the link� A graph�
search algorithm is used to �nd the prevailing tunneling

pathways in proteins and to calculate their relative cou�
pling strengths� A remarkable success of the tunneling
pathway model was that it predicted that ��sheet struc�
tures would be more e�ective in ET than � helices� which
has received strong support from experimental observa�
tions��
Since TDA is structure�dependent� it may di�er from

one conformation to another� However� the value of TDA
for a given protein is usually calculated based on the stan�
dard conformation of the protein determined experimen�
tally by X�ray cystallography� A question immediately
arises here� Can the TDA thus obtained be representa�
tive for the ET capability of the protein� which is actually
moving around in physiological condition� The answer to
this question does not seem very positive� Several groups
have started to question about it���� It has been shown
by Wolfgang et al� � that even modest structural 
uc�
tuations generated by standard molecular dynamics�MD�
method can lead to changes of TDA that are large enough
to challenge conclusions drawn from electronic structure
calculations on the basis of computations on individual
geometries� We also found from our own calculations that
TDA may sometimes 
uctuate around zero �presumably
due to the e�ect of destructive interference�� According
to eq� �
�� TDA � � means that the electron can never
transfer to the acceptor site�
A plausible idea to �x the problem is to introduce

an average TDA� for example� the root mean squarep
hT �

DAi� over an ensemble of conformations� to the rate
expression eq��
��� Computationally� this ensemble of
conformations can be a large number of snapshots ran�
domly taken from a MD trajectory� Strictly speaking�phT �

DAi would statistically represent the ET rate well
only if an ET reaction could take place in no time� Nev�
ertheless� tunneling is a dynamic event� During a tun�
neling process� the Hamiltonian governing the electronic
motion evolves simultaneously with the propogation of
electronic wave function� Therefore the tunneling of elec�
tron depends upon a Hamiltonian time series rather than
just a single Hamiltonian or an average one� It remains a
question how an electron will respond to the 
uctuations
of protein environment� Could the actual electronic pro�
pogation through a vibrating protein structure in a given
time t be described simply by the average electronic cou�
pling over the same period

phT �
DAit�

We shall present in this paper a systematical computer
simulation study for the above problems� The strategy
is to investigate the quantum dynamics of a tunneling
electron in a 
uctuating external �eld provided by a pro�
tein environment� The basic assumptions we made are
as follows� �a� The protein dynamics is treated classi�






cally� This assumption implies that the nuclear motion
is completely decoupled from electronic degrees of free�
dom� particularly� the nuclear motion is not a�ected by
an electron tunneling event� �b� The electronic motion is
treated quantum mechnically� It is assumed that the tun�
neling electron obeys the single�particle time�dependent
Schr�odinger equation i	h����t � H�t���t�� �c� H�t��
the Hamiltonian for an excess electron in the interior
of a protein at time t� is given by the single�particle
Hamiltonian obtained for the protein conformation at
time t�for instance� the converged Fock matrix yielded
by self�consistent �eld computation�� This assumption
means that the tunneling electron obeys the ground�state
picture and single�particle protocol in the same way as
the valence electrons do� as a result it experiences the
same Hamiltonian as the other electrons do� Furthermore
it means that the valence electrons belonging to atoms
around donor and acceptor and along the tunneling path�
ways do not feel the tunneling of the excess electron� in
another word� the electronic structure of a protein is not
distorted by tunneling� The readers have to bear in mind
that the conclusions we are going to draw about protein
ET dynamics in this paper are based on these three gen�
eral assumptions�
Some of our major results have been presented in a

letter�� In this paper� we shall give the details about
our simulations� The paper is organized as follows� The
time�dependent Schr�odinger equation in a 
uctuating
nonorthogonal basis is given in Section II� In the same
section� we also discuss the calculation method for the
nonadiabatic coupling matrix elements� The two�state
and general multi�state reductions using L�owdin�s par�
titioning technique are presented in Section III and IV�
Technical details about the computer simulation are dis�
cussed in Section V� To mention a few� the simulation
of protein nuclear dynamics was carried out by using the
molecular simulation package CHARMM�� and the Natu�
ral Bond Orbitals�NBO� method	 was used to transform
the Schr�odinger equation from atomic orbital �AO� ba�
sis into bond orbital �BO� basis� Results and discussions
are presented in Section VI� Section VII concludes the
paper�

II� TIME�DEPENDENT SCHR�ODINGER

EQUATION IN A FLUCTUATING

NONORTHOGONAL BASIS

In this Section� we derive the formulism of the
time�dependent Schr�odinger equation in a 
uctuating
nonorthogonal basis� We start from the operator form
of the Schr�odinger equation

i	h�tj��t�i � �H�t�j��t�i ���

where ��t� is the electronic wave function at time t� �H�t�
is the Hamiltonian at time t� and 	h is the Planck con�
stant� Assume we have a time�dependent nonorthogonal

basis set j��t�i� the overlap matrix is also time�dependent
S���t� � h��t�j��t�i� The basis functions satisfy the nor�
malization condition at any time

�I �
X
��

j��t�i �S���
��
h��t�j ���

To study the propogation of an electron in such a basis is
to compute h��t�j��t�i� Inserting the identity operator
into both sides of eq���� and projecting ��t� onto � yields
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Two di�erent notations for the wave function can be in�
troduced

hi�t�j��t�i � di�t�

h
S���t��d�t�

i
i
� xi�t�

where �d � �d�� d�� � � �� dN �� N is the electronic dimension
of the system� Correspondingly the Schr�odinger equation
becomes

i	h�t�x�t� � S���t� �H�t�� i	hK�t���x�t� ���

i	h�t �d�t� � �H�t� � i	hL�t��S���t��d�t� ���

where K���t� � h��t�j�t��t�i and L���t� �
h�t��t�j��t�i� To derive eq����� we see from the �rst
derivative of the equality

P
� S�� �S

����� � 
�� that
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If the basis functions are orthonormal� S�t� � I � then
K�t� � �L�t� �because h�t�j�i � h�j�t�i � ��� we �nd
eqs���� and ��� are identical�
The site occupancy is de�ned as the diagonal elements

of the following matrix Pi�t� � �ii�t�

��t� � S���t��d�t��dy�t� � S�t��x�t��xy�t� ���

For computational convenience� we adopt the second no�
tation ��x� in our calculations�
Eqs���� or ��� tells us that to understand the ET dy�

namics of an electron in an interested system we need to
know three time series S�t�� H�t� and K�t� or L�t� for

�



it� While obtaining S�t� and H�t� is straightforward� the
calculation of K�t� or L�t� is more complicated� We shall
discuss more about it in the following�
If we choose a localized basis for a time�dependent cal�

culation� we have to address the problem of 
uctuating
basis since localized basis 
uctuates as atomic con�gura�
tion 
uctuates� The K or L term is called the nonadi�
abatic coupling �NAC� matrices 
���� The NAC matrix
elements can be rewritten as

Kij�t� � �Rj � h i�Ri�j �

�Rj

 j�Rj�i �!�

if the wave function  i depends only on the position Ri

of the nucleus to which orbital i belongs� One can see
from the above equation that for a stable protein whose
atoms vibrate in the vicinities of their thermal equillib�
rium positions� the contributions from the nonadiabatic
e�ect are of the magnitude of phonons� which is usually
much smaller than the strength of electronic couplings�
Another property of the NAC matrix elements is its tem�
perature dependence� The e�ect of Kij on ET dynamics
�and the so�called electronic friction for MD
� diminishes
when the system cools down� For a liquid whose atoms
move wild and rapidly� the NACs may turn out to be
very important�
A simple idea to calculate the NAC matrix elements is

to introduce the concept of advanced and retarded over�

laps� In fact the NAC matrix element can be approxi�
mated by a di�erential form

h i j �t ji �



�
t

�Z
 ti�r� 

t��t
j �r�d�r �

Z
 ti�r� 

t��t
j �r�d�r

�
�
��

where 
t is the time steplength� the �rst term in the right
hand side is called the advanced overlap� the second the
retarded overlap� These overlaps mean the overlaps of
an orbital with another one at di�erent time� Let us just
forget about the time coordinate temporarily� assume the
atom associated with the orbital index i is at the position
where it is going to be at t� 
t or has been at t� 
t� and
calculate these advanced and retarded overlap integrals
as if they were usual ones�

t

i j

t-dt

t+dt

t+dt

t

t-dt

Time plane in phase space

K(j,i,t)K(i,j,t)

FIG� �� The NAC matrix elements are obtained by calcu�
lating the retarded and advanced overlap matrix elements�
The NAC matrix is not necessarily antisymmetric nor sym�
metric� due to the asymmetry of orbital trajectories in the
phase space�

In a generic nonorthonormal basis� K is not necessar�
ily an antisymmetric matrix �therefore H � i	hK is not
a Hermitian�� since in general jh j j�t iij �� jh ij�t jij
�see Fig� 
�� But if the basis is orthonormal� it has to
be an antisymmetric one in order to guarantee that the
operator in the right hand side of eq���� is a Hermitian�
which is a necessary requirement from the conservation
law of particle numbers in an orthonormal basis�

III� THE TIME�DEPENDENT TWO�STATE

PICTURE

In a nonorthogonal basis� the e�ective two�state Hamil�
tionian matrix elements at time t are obtained by apply�
ing the L�owdin partitioning technique to the Hamiltonian
matrix H�t� of the whole system� as follows

HE
DD�t� � HDD�t� � TE

DD�t� �

�
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DA�t� � HDA�t� � TE

DA�t� �
��
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AA�t� �
��
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X
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�
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where E is the tunneling energy� which is normally close
to HDD�t�� HAA�t� �for convenience� we shall drop o�
the superscript E� and denote HDD by ED and HAA

by EA �� D�A� bi stand for the donor� acceptor and the
bridge states respectively� and S�t� is the overlap ma�
trix at time t� HDA�t� represents the through�space in�
teraction� which is usually very small in long�range ET
�and sometimes we neglect it�� TDA�t� is the conventional
superexchange coupling in literature� while TDD�t� and
TAA�t� are the backscattering matrix elements which are
introduced to account for the interactions of donor and
acceptor with their local environment� As is well�known�
TDA decays exponentially with respect to the increasing
of the separation distance between donor and acceptor�
whereas TDD and TAA� which represent in nature the lo�
cal electronic properties around the donor and acceptor�
have nothing to do with the length of the bridge �Fig�
��� A common property of the three matrix elements
is that they share the same poles in the energy domain�
namely� when the tunneling energy approaches the bridge
eigenstates� they diverge and consequently the two�state
approximation ��SA� breaks�

D

DD

AA

DA

DBi

T

T

T

Protein Backbone

A

Bi

HBiA

H

FIG� 	� A complete two�state picture for protein electron
transfer� The backscattering matrix elements TDD and TAA
rest upon the local environment around donor and acceptor�
represented by the two circles in the 
gure�

In contrast to the well�known importance of TDA� the
role of TDD and TAA has not been explicitly mentioned�
to our knowledge� This may be due to the fact that
most of previous TDA calculations were devoted to �nd�
ing the resonant electronic states� The energies of donor
and acceptor states have to be varied such that the sys�
tem reaches resonance� In the case of resonance� HDD �
HAA� which means that the e�ective two state system is
on resonance as well� In fact� the role of the backscat�
tering matrix elements in the static case is apparent� If
we rewrite the resonance condition for the two state sys�
tem� ED � TDD � EA � TAA� we shall see the energy
shift required for resonance is ED � EA � TAA � TDD�
The reason that ED � EA is always not the resonance
condition for a real protein is owing exactly to the fact

that the local chemical structures surrounding donor and
acceptor are always distinct�
In the absence of the Landau�Zener 
uctuation�

namely� when the donor and acceptor are energetically
static� TDD and TAA will become important� In such a
case� TDD � TAA acts as an e�ective driving force which
brings the donor and acceptor in and o� resonance with
frequencies resting on the motion of the local environ�
ment around the donor and acceptor rather than the
donor and acceptor themselves� On the other hand� even
in the presence of the 
uctuations of potential energy
surfaces ED and EA� TDD and TAA may either prolong
or shorten the time in which the system remains in res�
onance� or� when TDD � TAA is comparable in magni�
tude with ED � EA� increase or decrease the times of
Landau�Zener crossing� Due to the localization property
of backscattering� the 
uctuations of TDD and TAA are
not completely uncorrelated with those of ED and EA�
The total driving force HDD�HAA is in fact the result of
concerted motion of donor� acceptor and their surround�
ings �interrelated by the Newtonian equations of motion
in the MD simulation�� Hence TDD and TAA are not
completely stochastic additions to the e�ective potential
energy surfaces �though they can be regarded as some
kind of heat bath or dynamic energy disorder��
In the above discussion� we describe the two state re�

duction which simpli�es a complicated protein ET sys�
tem greatly into a two state model� and the physical
meaning of the reduced system� In the context of time�
dependence� such a procedure would be justi�ed only
when the following Schr�odinger equation reproduces ap�
proximately the electronic propogation between donor
and acceptor in the entire ET system

i	h
d

dt

�
�D�t�
�A�t�

�
�

� HE
DD�t� HE

DA�t�
HE
DA�t� HE
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� �
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�
�
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The overlap matrix element SDA � SAD has been omit�
ted since in long�range ET it is negligible� SDD � SAA �

 if we assume that the states have been normalized�
therefore� the overlap matrix is dropped o� in the above
equation� In the absence of a general analytical solution�
eq� �
�� can be solved if the Hamiltonian H is time�
independent �Appendix A��
We shall prove in this paper that eq��
�� can reproduce

the exact ET dynamics within a certain amount of time
�normally a few hundred femtoseconds with a constant
tunneling energy E�� This statement� which we call the
time�dependent two�state approximation �TD�SA�� was
repeatedly proven valid in a series of computations for
azurin ��sheet with various donor�acceptor pairs �hence
di�erent levels of TDA�� The detailed numerical results
will be presented in Section VI� The following discussion
is based on the preconception that the TD�SA works�
Here we discuss the question raised in the Introduc�

tion� Can an average of TDA�t� be a good approximation
in expressing ET rate� Considering a two�state system
in which the donor and acceptor are kept in resonance

�



�not necessarily �xed� forever while TDA is 
uctuating�
the transfer probability from donor to acceptor can be
explicitly written as

PDA�t� � sin
�

�



	h

Z t

�

TDA�
�d


�
�
��

provided that the electron is at the donor site when
t � �� If we do not consider the 
uctuation of TDA�t�
but replace it with some sort of average� for instance�
its root mean square

p
hT �

DAiT �where T is the time
length for the average�� we will obtain the following

transfer probability PAve�
DA �t� � sin�

h
�


h

p
hT �

DAit
i
� Obvi�

ously the actual dynamic behavior may be di�erent from
the sinusoidal one described by the latter� For exam�
ple� if we assume that TDA�t� can be expanded into a
cosine series TDA�t� �

a�
�
�
P�

n�� an cos�n�t� �where

� � ���T �� then
phT �

DAi�
q�

a�
�

	�
� �

�
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n�� a
�
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whereas the actual transfer probability is PDA�t� �
sin�

�
�


h

�
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�
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n�
sin�n�t�

	�
� It is clear that the

actual transfer probability is a�ected by not only the
Fourier coe"cients an but also the frequencies �but tak�
ing the average of TDA washes out the the latter e�ect��
The importance of frequencies is obvious for an extreme
case when TDA�t� vibrates with a single high frequency
mode TDA�t� � 	h� cos�n�t� �where n� 
�� In this case�phT �

DAi � 	h��
p
�� while PDA�t� � sin��
�n�� which

means that the ET rate is actually very small�
Despite of its simplicity� the above analysis has shown

a circumstance under which the average of TDA cannot
depict dynamic ET� In real proteins� particularly those
systems with strong interference e�ect� we may encounter
a similiar failure if we were to represent ET by an average
TDA�
Although it has been shown that TDD and TAA do play

a role on ET reaction� it does not seem that the tunnel�
ing pathway model has to be modi�ed to take them into
consideration� due to their localization property� Yet� a
more intriguing question is how to incorporate the dy�
namic e�ect into the pathway model� The concept of
tunneling pathways is based on spatial decomposition
of TDA� If the potential energy pro�les along di�erent
pathways become time�dependent� would the perturba�
tions due to thermal 
uctuations become large enough to
reshu#e the relative importance of pathways� namely� to
overthrow the dominance of the major pathways�if they
exist�� If the answer is negative� one can surmise that
ET reactions may really happen through pathways� Al�
though in this paper we are not going to envisage the
time dependence of tunneling pathways� it should merit
more investigations in the future�

IV� GENERAL MULTI�STATE REDUCTION FOR

ELECTRON TRANSFER

We have shown in the above section that the TD�SA
presents a largely simpli�ed picture for studying compli�
cated ET dynamics in proteins� If� however� a bridge
state joins resonance with the donor and acceptor� the
two�state picture may fail� Such a case invites an extra
reduced state to describe the motion of the third resonant
state�
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FIG� �� Three�center electron transfer model� The redox
center D is the origin�donor
� M is the intermediate site �mid�
dle acceptor
� and A is the destination�
nal acceptor
�

We introduce here a general framework for the multi�
state reduction �MSR�� Let us assume that we would like
to do a n state reduction for a protein electronic structure
which consists of N orbitals� The n orbitals are labeled
as p�� p�� � � �� pn� while the remaining orbitals �the bridge�
as b�� b�� � � �� bN�n�N � n�� the reduced matrix elements
are given by using the projection technique

HE
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�
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Similiar to the two�state reduction scheme� the �nal goal
of the MSR is to approximate the ET dynamics of the
real system with a reduced time�dependent Schr�odinger
equation in which the reduced Hamiltonian is given in
the above projected form� i	h�t� � HE��
Let us study an ET system which has three redox

centers� denoted by D� M� and A� respectively�Fig� ���
There are two possible types of ET reactions in a three�
center system��� The �rst one is the superexchange
mechanism� D�� � �A �	 D� � ��A�� The second one is the
sequential mechanism� D����M���A �	 D� ���M����A �	

�



D� � ��M� � �A�� Three�center ET kinetics follows the su�
perexchange pattern when the intermediate state M is o�
resonance with the donor and acceptor� In the resonance
regime� the sequential pattern occurs where the interme�
diate site is also populated� For the same three�center
system� the ET reaction should be much faster in the
sequential channel than in the superexchange channel�
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FIG� �� A nine�state tight�binding model system� The
site energies of all bridge states equal EB� the ener�
gies of the donor and acceptor are zero� the intersite
couplings are VBB �bridge�bridge
� VD� �donor�bridge
�
VBM �intermediate state�bridge
� and VNA �bridge�acceptor
�
non�nearest�neightbor interactions are neglected� The site en�
ergy of the intermediate site EM is adjusted to drive the sys�
tem into various transfer patterns�

In this Section� we shall discuss the three�center reduc�
tion with a simple tight�binding model �which is analo�
gous to the H�uckel model�� since three�center ET reac�
tions are relatively unfamiliar and we would like to estab�
lish a clear�cut picture before handling genuine systems�
Studies for proteins will be given in Section VI�
Fig� � illustrates the tight�binding model for our study�

For simplicity� we have chosen a homogenous system in
which all the bridge sites have the same energy �EB � ��
arbitrary unit� and all the intersite couplings are identi�
cal �VD� � VNA � VBM � VBB � 
�� consequently the
backscattering matrix elements for D and A are equal
�this saves us e�orts to tune them into resonance�� Be�
cause of the di�erence of surroundings� the backscatter�
ing for the low�lying intermediate state di�ers from those
for D and A� Therefore� the three�state resonance condi�
tion is not intuitively ED � EM � EA� For a given static
system� the transfer probilities from D to M and D to A
oscillate with speci�c frequencies� The three�state reso�
nance conditions can be found by computing the max�
imum electronic occupancy tunneled via the M site in
several oscillation periods� Fig� � shows that jEM �EDj
for resonance increases when the couplings between M
and its neighboring sites �VMB� turn stronger� When
VMB � �� this value is approximately 
���� which is al�
most in the middle of the gap� This example demon�
strates for a model three�state system the conspicuous
dependence of the sequential resonance condition upon
the electronic structure around the intermediate state�
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Three�state resonance associated with sequential tunneling
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The �SA cannot depict precisely the ET dynamics
via an intervening state when the system enters the se�
quential transfer regime where a large part of occupancy
goes through the middle state� A three�state approxima�
tion��SA� has to be introduced
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where the e�ective three�state Hamiltonian matrix ele�
ments are obtained by using eqs��
!� and �����
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FIG� �� Comparison of electronic propogation results
produced by the exact� 	SA and �SA methods for the
tight�binding model system in the sequential transfer
regime� �a
EM � ��	� E�s

tun � ������ E�s
tun � ������

�b
EM � ��	�� E�s
tun � ���	��� E�s

tun � ���	��

Fig� ��a� shows that the �SA can reproduce the exact
dynamics perfectly when EM � ���� One can see that
in this case the �SA can somewhat describe the transfer
dynamics between D and A with a slightly di�erent tun�
neling energy� since the transfer dynamics between D and
A still resembles the sinusoidal behavior� But when EM

is increased to ����� resemblance to sinusoidal behavior
vanishes� as is shown in Fig� ��b�� The time evolution
cannot be attributed to a two�state mode� By compari�
son� the �SA does much better� albeit its performance is
not as impressive as shown in Fig� ��a�� In Fig� �� we also
show that the maximum population transfered through
the middle site M versusEM can be approximately repro�
duced by the three�state model� As expected� the �SA
deteriorates when the localization of M weakens �VBM
becomes greater��
The above analysis is not merely for improving the

�SA� As was pointed out by Ulstrup and coworkers���
some of the most exciting chemical and biomolecular ET
systems involve more than two reaction centers� Multi�
step ET and dynamically populated intermediate states
�$hot$ electronic states� in such systems has become cen�
tral concepts in the new areas of ultrafast�femtosecond�
processes� Our MSR approach provides� from rigorous
electronic structure point of view� an e�ective multicen�

ter picture for such type of multi�channel ET reactions�

V� COMPUTATIONAL DETAILS

Fig� � shows the 
owchart of our computer simulation�
Before we proceed to the details� we would like to clas�
sify three time scales at �rst� The �rst time scale is the
ET time steplength� which is the steplength used in inte�
grating the Schr�odinger equation� denoted by 
tET � The
second refers to the MD time steplength� which is the
steplength chosen to integrate the classical equation of
motion for protein� denoted by 
tMD� The third is called
by us as the sampling steplength� which means the time
interval between two neighboring sample Hamiltonians
or sample conformations taken from a MD trajectory� de�
noted by 
tSP � The relation for these three steplengths
is 
tET 
 
tMD � 
tSP �
An important issue about the time steplength is how

short 
tSP should be in order not to skip over the contri�
bution of the fastest motion of proteins to the ET dynam�
ics� It is known that harmonic vibrations of bond lengths
and angles generate the highest frequencies in proteins�
and the time scale for this type of motion is at the level of
femtoseconds��� Based on tests for a small diglycine� we
found that the results of electronic dynamics with di�er�
ent 
tSP converged when it approached a femtosecond�
Therefore� one femtosecond can be used as the sampling
steplength�
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FIG� �� The �owchart of the computer simulation� In this
�owchart we assume that the integration of the Schr�odinger
equation is implemented by using a predictor�corrector
method�

A� Molecular dynamics simulation for azurin

As has been pointed� we need to know the Hamiltonian�
overlap and NAC matrices of the protein as a function

�



of time� We assume that the Hamiltonian at any time is
simply the single�particle Hamiltonian derived from the
protein conformation at that time� Prior to obtaining
the above�mentioned matrices that guide the tunneling
electron during the transfer process� a series of conforma�
tions were produced from an equilibrium MD trajectory�
In this research� we employ the well established molec�
ular simulation package CHARMM to perform the MD
simulation for proteins�
The cystallographic structure of azurin�� was taken

from the Brookhaven Protein Database� The force �eld
for the metalloprotein azurin� in addition to the general
parameters provided by CHARMM for common animo
acids� was taken from a paper by Voth and coworkers for
another blue copper protein plastocyanin��� We modi�ed
some of the force �eld parameters to keep the bipyramidal
geometry of the copper complex of azurin thermodynam�
ically stable�
In order to get more natural dynamics� we performed

solvent simulation for the whole azurin molecule� al�
though we did not actually include any water molecule
in our electronic structure calculations� Compared with
a less time�consuming vacuum simulation� the existence
of water simply makes the motion of the protein more
con�ned and therefore the predicted atomic 
uctuations
will be smaller than those by a vacuum simulation�
To begin with� we prepared a cube of water� which

contains �������� unit cells� The length of the unix
cell was chosen according to the density of water under
room temperature and one atmospheric pressure� This
cube of water was equilibrated at ��� K for 
���� AKMA
time steps by standard Verlet algorithm using the peri�
odic boundary conditions� All bonds and angles were
shaken using the SHAKE command�
We put the azurin molecule� together with the crys�

tallographic water molecules� in the center of the equili�
brated water cube� and cut the cube into a sphere of a
radius ��%A� A deformable stochastic boundary with a soft
boundary potential and a stochastic bu�er region�� was
introduced to contain the water molecules in the sphere�
Any water molecule whose oxygen fell out of this sphere
was deleted� Also those whose oxygen had a distance
to the heavy atoms of the protein and crystallographic
water shorter than ���%A were eliminated� All the wa�
ter molecules �including the crystallographic water� were
equilibrated with the protein being �xed for some time
in order for them to redistribute energetically favorable
around the protein�
The water sphere normally shrinked after some period

of equilibration� the tips of the protein might therefore
be exposed to vacuum� In order to avoid this� more wa�
ter was added to keep the whole protein in well solvated
condition� We did this in the following way� After a pe�
riod of equilibration� the program paused for �lling up
the shrinkage and possible voids� the water cube �with a
di�erent SEGment name� was used to overlay the whole
system� the new water molecules were concatenated with
the old water by the JOIN command� After that we

rotated the new system !�� and repeated the same over�
laying procedure for two or three times� It was found
that rotating the system brought more chances for �ll�
ing� as expected the number of water molecules added
to the solvent after each overlaying decreased when the
times of rotation increased� The new water molecules
were deposited in a new PDB �le� We took the restart�
ing coordinates from this new structure �le and those
for the protein and cystallographic water which were not
changed� reassigned initial velocities for all the atoms�
and equilibrated the new system� Checking the 
uctu�
ations of kinetic energy� potential energy� boundary po�
tential and some geometries �e�g� bond lengths� bond
angles� and dihedral angles�� we found that the system
had reached thermal equilibrium after ��� picoseconds of
equilibration�

121Met

107Gln

108Tyr

109Met

110Phe

111Phe

112Cys

126Tyr

125Leu

124Thr

123Gly

122Lys

FIG� �� Animo acid sequence of the ��sheet in azurin� The
dotted lines between the two strands stand for the hydrogen
bonds�

After equilibration� production trajectories started to
be created� with a time steplength of one femtosec�
ond� The whole protein is apparently too large for
time�dependent electronic structure calculations� But
in this paper we are interested in only the ��sheet por�
tion formed by the Cys����Gln��� and Met����Thr��� ��
strands �as is shown in Fig� ��� which has been the tar�
get of ET experiments� Therefore� we cut the ��sheet
residues from the whole azurin and deposited them into
a separate trajectory �le while the simulation was being
carried out� Instead of a simple hydrogen atom substi�
tution� we applied the ACE and CT� termini provided
by CHARMM�s topological input �le to where a peptide
bond was ruptured due to the truncation� Assume that
we select a segment whose index runs from the n�th to
the m�th residue� after the structure is pruned� the coor�
dinates of C� CA and O in the n� 
 residue are given to
CY� CAY and OY in the ACE terminus� and those of N�
CA and HN in the m� 
 residue to NT� CAT and HNT
in the CT� terminus� The coordinates of the remaining
six H atoms are determined by the HBUILD command
�therefore the resultant geometries are somehow energet�
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ically minimized�� No signi�cant rotation of the three H
atoms around the axis perpendicular to the plane they
form and through the carbon atom �CAY or CAT� was
observed in both termini along the trajectory thus cre�
ated� This is important for a time�dependent calculation�
because a free rotating terminus� even being peripheral to
the tunneling pathways� can constitute a large boundary
perturbation� which may not be true in a real system�

B� Semiempircal electronic structure calculations

A large part of our simulation is to get the single�
particle Hamiltonian matrices along a MD trajectory� In
this research we employ both the extended�H�uckel�EH�
and complete neglect of di�erentail overlaps �CNDO�
methods�� to create the Hamiltonian matrices in the
AO basis� The EH code was taken from QCPE ��
�Ex�
tended H�uckel Molecular� Crystal and Properties Pack�
age�	� while the CNDO&S code was taken from QCPE
���� Bond Orbitals in the Neglect of Di�erential Overlap
�BONDO� Approximation�
� In the former method� the
Hamiltonian is constructed directly from the overlap ma�
trix elements� The diagonal elements are the ionization
potentials of the atomic orbitals Hii � Ei and the o��
diagonal elements are taken as Hij � �K���Sij�Ei�Ej��
where K � 
��� is the H�uckel constant� The latter
method starts with a Hamiltonian which contains the
primitive H�uckel term and Coulombic contributions and
requires a self�consistent �eld procedure� In our cal�
culations� convergence is regarded achieved if the en�
ergy di�erence between two adjacent iterations is smaller
than ��
��� hartree� In order to accelerate the iter�
ation� computation of a conformation utilizes the con�
verged density matrix of the last conformation� which was
only one femtosecond before� as an input for construct�
ing the initial Fock matrix �rather than constructing it
from scratch�� The current conformation normally does
not di�er drastically from the last one� since the pro�
tein structure changes little during a femtosecond� As
a result� the number of iteration steps needed to reach
self�consistence for each conformation can be reduced�
At present� we are unable to perform open�shell CNDO

calculations� Therefore� we cannot treat proteins with
metal ions as donor and acceptor at such a theoretical
level� �Due to the same computational reason� residues
with a positive charge is neutralized by removing a pro�
ton o��� So our donor and acceptor have to be chosen as
two orbitals from the protein�s electronic structure� And
for mimicing photoexcited states� the orbital energies of
these two orbitals have to be changed such that they fall
into the energy gap of the protein� We found that if we
did this in the AO basis� the bridge eigenstates would
be signi�cantly perturbed �since an AO has very strong
couplings with other AOs� particularly those belonging to
the same atom�� Considering the usual assumption that
the intercalation of donor and acceptor should not a�ect

the electronic structure of the bridge too much� an AO is
not a well�de�ned donor or acceptor� Therefore� we em�
ployed the BO basis formed by using the NBO method�
Changing local energetics in the BO basis hardly changes
the bridge electronic structure� Additional advantages
for using the BO basis are that sometimes we may need
to distinguish electron and hole transfer and the BO ba�
sis provides an intuitive picture of chemical bonds which
enables us to view ET in a way more consistent with the
tunneling pathway model� In the following Subsection�
we shall discuss the NBO method�

C� Transformation to the natural bond orbital basis

Having obtained the overlap� Hamiltonian and density
matrices in the AO basis for an electronically saturated
system� the next step is to transform everything from the
AO to BO basis� Due to the localization nature of pro�
tein electronic structure� the major parts of the electronic
wave functions of an atom seldom go far� rather they are
always restricted to a range that contains a few neigh�
boring atoms� �And thus chemical bonds are formed�
Of course there are a few exceptions in which the elec�
tronic wave functions are delocalized� as we shall discuss
later�� The localization character can be revealed if one
diagonalizes the subblocks of the density matrix associ�
ated with a speci�c group of atoms� e�g�� a pair of atoms�
This thought was systematically developed into the NBO
method� The idea of the NBO is to use those nearly fully
occupied eigenstates of the subblocks in the density ma�
trix involving relevant atoms to represent the lone pairs
�LPs� of the atoms and the bicentral bonds between two
atoms� and construct the corresponding antibonds for the
known bonds� considering appropriate polarization�
A de�ciency for the original BONDO program is that

it is unable to handle animo acid residues that contain
aromatic rings� The sub density matrix diagonalization
scheme can �nd three fully occupied bonds if we diagonal�
ize the subblock associated with the �� AO�s belonging
to the six carbon atoms around the aromatic ring� after
depleting all the known � bonds� but the eigenvectors of
these three eigenstates do not seem to form chemically
reasonable bonds� and they are not numerically stable�
i�e�� they change somehow randomly from one conforma�
tion to another�
We describe here a method to construct the correct

delocalized bonds for aromatic rings� Before construct�
ing these delocalized orbitals� we �nd out all the possible
LPs and bond pairs� deplete them from the density ma�
trix� and pick up the indices of atoms which form an aro�
matic group� Then we take the three sp� hybrids of each
carbon of each aromatic ring� and build the pz orbitals
from them according to the condition of orthonormality�
All the hybrids including these newly built pz�s are sym�
metrically orthogonalized subsequently� and the bonding
and antibonding orbitals other than the aromatic delo�
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calized states are deposited in the transformation matrix
�TM�� The aromatic delocalized orbitals are formed us�
ing appropriate symmetry adapted linear combinations
�SALCs� of the six �p��� valence orbitals and then de�
posited to the TM� In the TM� they are reordered to be
prior to the LPs and right after the bond pairs and la�
beled as PB and PB�� This new TM is used to transform
the density matrix and Hamiltonian from the AO to the
BO basis� For all animo acids whose side chain has an
aromatic ring� the diagonal elements of the correspond�
ing subblocks of the BO density matrix are found very
close to ��fully occupied� for the three �b� while those of
the three �� orbitals are very small� �For the benzene
molecule which is highly symmetric� our method works
perfectly� The occupancies of the three �b are found al�
most � and those of �� are found almost null�� This
means that the delocalized bonds have been successfully
formed� As expected� the antibond densities of low�lying
�� orbitals tend to be larger than those of others�
Fig� ! shows a typical chemical bond energy pro�

�le �energies plotted against orbital indices� for two
residues�ACE�Gly�CT� and ACE�Phe�CT�� � calcu�
lated by using the CNDO method� The bond ener�
gies shown are the average values over two picoseconds�
whereas the corresponding 
uctuctions are shown in the
lower panel� The bridge gap is calculated to be about

� eV� It can be seen that� �
� The � and �� bonds are
energetically closer to the gap� ��� The same chemical
group has approximately the same bond energies for its
bonds which do not participate interactions with the ex�
terior� e�g� the C�O double bonds and the two ACE
�or CT�� termini� hence we can identify di�erent sort of
groups from the energy pro�le� Moreover� we would like
to point out that the upper panel of Fig� ! presents the
static energy disorder of the protein�s electronic struc�
ture� whereas the lower panel gives the information about
the amplitude of the dynamic energy disorder� which
sometimes refers to the time dependence of the energy
pro�le��� Energy disorder is an important concept in the
theory of electron transport in molecule wires���
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FIG� �� Energy disorder pro
le of chemical bonds for two
residues Gly��� and Phe���� obtained by the NBO method�
The upper panel shows the average orbital energies�static en�
ergy disorder
� the lower panel shows the corresponding root
mean square �uctuations �dynamic energy disorder
� The
C��H� bonds of the two residues are taken as the donor and
acceptor� Their energies are lifted into the gap and kept reso�
nant� �BD� stands for bond pairs� �BD�� for antibond pairs�
�LP� for lone pairs� �PB� for aromatic � bonds� and �PB��
for aromatic �� antibonds�

Fig� ! shows that the bond energies are thermodynam�
ically stable� but it does not describe the detailed bond
structure� The full information about the chemical bonds
de�ned by the NBO method is stored in the TM between
the BO and AO bases� Let us assume the following vec�
tor represents a bond between two second row elements
K and L� ��� �� CK

� � C
K
� � CK

� � C
K
� � �� C

L
� � C

L
� � C

L
� � C

L
� � �� ��

�a row in the TM�� All the irrelevant coe"cients are zero

except those corresponding to the two atoms� CK�L
i �i �


� �� �� ��� The polarization factors for the two atoms are

in fact �K �
P�

i���C
K
i �

� and �L �
P�

i���C
L
i �

�� while
the normalization condition requires that �K � �L � 
�
We know that the molecular orbital has to be a lin�
ear combination of two somewhat distorted hybrid or�
bitals� In order to check if the hybrids are correct� the
program renormalises for each individual atom the co�
e"cents to one� For convenience we thereafter drop o�
the superscripts K and denote the renormalized coe"�
cients as �C�� C�� C�� C��� The p�character and orien�
tation angles for an atomic hybrid are de�ned as P �


�C�
� � 
�' � arctan�

q

� (C�

��
(C��� � � arctan� (C�� (C���

where (C�� (C�� (C� are the renormalized coe"cients �to a

unit vector�� i�e�� (Ci � (Ci�
p

� C�

� � We plot in Fig� 
�
the 
uctuations of polarization factors� p�characters and
hybrid orientation angles of some typical bonds�
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Fluctuation of a natural peptide bond C(110Phe)−N(111Phe) 
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Fluctuation of a natural bond N(111Phe)−HN(111Phe)
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Fluctuation of a natural bond N(111Phe)−CA(111Phe)

C

N C

N

Θ

C

C

Φ

Θ

Φ

N

N

�d�

0 50 100
Time (fs)

1.0

1.5

2.0

2.5

3.0

P−
Ch

ara
cte

rs

0 20 40 60 80 100
Time (fs)

−180

−120

−60

0

60

120

180

Hy
bri

d O
rie

nta
tio

ns

0 50 100
Time (fs)

0.60

0.65

0.70

0.75

0.80

Po
lar

iza
tio

ns
 

Fluctuation of a natural bond CD1(111Phe)−CE1(111Phe)
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FIG� ��� Fluctuations of chemical bonds obtained
by the NBO method� �a
 The peptide bond be�
tween Phe��� and Phe���� �b
 N�Phe���
�HN�Phe���
�
�c
N�Phe���
�CA�Phe���
� �d
A � bond in aromatic ring�
CD��Phe���
�CE��Phe���
�

Two major technical problems of the NBO method ap�
plied to a time�dependent study have to be emphasized
here�
The �rst one is the bond orientation problem� As we

know� the NBO method �nds bonds by diagonalizations
of individual subblocks� When it determines a bond� it
does not $feel$ the existence of the other subblocks� This
does not result in a mistake for a single conformation
computation� but in the time�dependent case it may lead
to the following problem�
Imagine two bonds A and B which are associated with

di�erent subblocks but close enough to have a consider�
ably big coupling� they are found by the NBO procedure
as jAi � ��� �� AK

� � A
K
� � A

K
� � A

K
� � �� A

L
� � A

L
� � A

L
� � A

L
� � �� ���

jBi � ��� �� BM
� � BM

� � BM
� � BM

� � �� BN
� � B

N
� � B

N
� � B

N
� � �� ���

where it is implied that bond A is formed between two
second�row atoms K and L� while bond B between M
and N � Diagonalization of subblocks K �L and M �N
gives two options which have opposite signs� jAi� �jAi
and jBi� �jBi� The diagonalization procedure chooses
the one which satis�es a probably arbitary criterion� say�
the s component of the �rst atom must be positive� for
a given conformation�
Now assume that one of the two bonds has small s char�

acters �e�g� � bonds�� jAK
� j 
 max�jAK

� j� jAK
� j� jAK

� j��
jAL

� j 
 max�jAL
� j� jAL

� j� jAL
� j�� Imagine for the next con�

formation at time t � 
t� due to the local perturbation
around K and L� the components evolve from AI

i �t� to
AI
i �t � 
t� � AI

i �t� � 
AI
i �I � K�L� i � 
� �� �� ��� If

the time step 
 is small or the structural 
uctuations are
small� the increments are small j
AI

i j 
 
� Although
they may not be able to change the signs of the big
p components� they can change the signs of AK

� and
AL
� since they are supposed to be small� Let us as�

sume that AK
� �t� � � while AK

� �t � 
t� � �� it there�
fore has to be 
ipped� AK

� �t � 
t� 	 �AK
� �t � 
t�� and

as a result� the three p components of atom K and
all components of atom L are 
ipped simultaneously�
AK
i �t � 
t� 	 �AK

i �t � 
t��i � �� �� ���AL
j �t � 
t� 	

�AL
j �t� 
t��j � 
� �� �� ���While this is not a big change

for AK
� and AL

� � it is a big and perhaps unphysical change
for the p components� On the other hand� let us assume
that the local perturbation around M and N does not
create an increment which is big enough to upset the
sign of BM

� � Everything continues smoothly for the B
bond� Now� let us examine the coupling between the two
bonds� At time t� it is HAB�t� � hA�t�jH�t�jB�t�i� at
time t � 
t� it becomes HAB�t � 
t� � hA�t � 
t�jH�t �

t�jB�t� 
t�i � h�A�t� � 
AjH�t� 
t�jB�t� � 
B�i� We
see HAB�t�
t� � �HAB�t�� if the 
uctuations are small�
That is to say� the consequence of such a sign switching
for eigenvectors is a sign switching for the corresponding
couplings in the NBO Fock matrix� For aromatic rings�
the SALCs will mispresent the delocalized state if the six
p

�

z orbitals do not point to the same direction� As a re�
sult� large occupanies in the antibonding orbitals will be
observed�
The solution to this problem is to choose a reference

conformation for which the NBO creates the bond struc�
ture correctly� save the orientations of all bonds into an
information matrix� and impose these orientations to all
bonds of all conformations involved in the calculation�
For systems containing aromatic rings� one must make
sure that there exists no phase di�erence among all the
atomic hybrids of the six carbon atoms� This idea will
presumably fail if there is a structural transformation or
bond reformation� which is not very likely for a protein
in thermal equillibrium�







The second problem is the degeneracy problem� The
degeneracy problem arises when in a single subblock
there are two bonds which are both fully populated� The
diagonalization procedure may not be able to distinguish
them� The eigenstates thus created may be mixed states�
The C�O double bond and O LPs in each amino acid are
such cases� Diagonalization of the sub density matrix of
C�O cannot single out the �� � bonds� Therefore� if we
transform the Hamiltonian matrices of consecutive con�
formations along a MD trajectory to the BO basis� very
large 
uctuations of Hamiltonian matrix elements may
be observed� This type of false 
uctuations of Hamilto�
nian may in
uence the numerical stability of electronic
dynamics�
Di�erent from the problem of aromatic ring� which is a

degeneracy problem too� the �� � bonds cannot be built
in a similiar way� Although we have known two sp� hy�
brids of C which take part in the formations of C�N and
C�C� bonds� the other sp� and the pz orbitals cannot
be constructed from the two known sp��s by using only
the condition of orthonormality� The method to repair
this problem is to diagonalize the corresponding subblock
of the Hamiltonian matrix� because �� � bonds are not
energetically degenerate� The eigenstates thus obtained
would represent more correctly the bonds� and 
uctuate
less�
The same problem exists for the two LPs of oxygen

of the CO group� Diagonalization of the one�center sub�
block belonging to the oxygen sometimes could not dis�
tinguish the two LPs very well� If we diagonalize the
corresponding subblock of the Hamiltonian matrix� the
following two states will be found �LP� � p

�

y� �LP� �

����s
�

�����p
�

x� where the prime means the orbitals have

been transformed to a local coordinate system� p
�

y is
perpendicular to the plane formed by the � and � bonds
of the C�O pair� which point in the local coordinate
system to x� and z� respectively� If we further assume
that the two LPs should be equivalent no matter how
asymmetric the environment may be� we can build two
equivalent LPs by simply taking linear combinations of
�LP� and �LP�� �LP� � �
�

p
����LP� � �LP��� �LP� �

�
�
p
����LP� � �LP��� The subblock in the transformed

Hamiltonian matrix will have a nonzero o��diagonal el�
ement� which stands for the strong Coulombic repulsion
between the two LPs�
When we transform from the AO basis the Schr�odinger

equation into the BO basis� the NAC matrices have to
be transformed as well

KBO
kl �t� �

X
ij

Tik�t�
h
�Tjl�t�S

AO
ij �t� � Tjl�t�K

AO
ij �t�

i

����

where Tik�t� is the TM element between the k�th BO and

i�th AO states at time t� and �Tjl�t� is the �rst�order time
derivative of Tjl�t��

D� The integrator

The time�dependent Schr�odinger equation is integrated
by using either the Gear predictor�corrector method or
the classical Runge�Kutta method� The algorithms of the
integrators require that H�t�� S�t� and K�t� be known
at arbitary time t� It will be extremely time�consuming
to calculate using quantum chemical approaches these
matrices for each ET time step since 
tET is usually of
the magnitude 
��� femtosecond in order not to diverge
while the interested time scale for our computation is
normally at the level of picoseconds �dependent on the
Landau�Zener time�� On the other hand� since the di�er�
ence of the protein conformations may be small within a
few 
tET so that replacing the intermediate ones by inter�
polated ones may not result in a pronounced di�erence of
electronic dynamics� it does not seem necessary to calcu�
late the matrices every ET step� Rather we take a series
of conformational snapshots from a MD trajectory every

tSP � calculate only for these sample conformations the
matrices Hn� Sn�Kn using quantum chemical methods
while get V �t� at arbitary time t using the cubic spline
interpolation method�
Numerical error is an important issue about the inte�

grator that is related to the long�range ET� which nor�
mally involves a system with hundreds or even thousands
of orbitals and a very weak TDA� Accumulating nu�
merical error is inevitable for any integration method�
The question though is� if the transfer probability within
the Landau�Zener time goes smaller than the average er�
ror jh��t�j��t�i � 
j�N � say 
���� due to a small TDA�
how can we distinguish it from numerical error� Indeed
this question may point to a serious limit of any time�
dependent ET simulation� That is when error propoga�
tion runs faster than electronic propogation to a very
weak coupled state� In the case that there is no imme�
diate answer to the question� we guess that less numer�
ical error is allocated to states which gain smaller occu�
pancies� namely� the distribution of occupancies is not
a�ected too much by numerical error� Albeit we cannot
prove it in a dynamic case� we can prove that this is basi�
cally true in a static case �while numerical error may have
nothing to do with the time�dependence of Hamiltonian
etc��� by comparing the result given by the integrator and
that by the following analytical formula

PDA�t� �

�����
X
n

exp ��iEnt�	h� hAj�nih�njDi
�����
�

����

where En is the eigenenergy of the n�th eigenstate� �n

is the corresponding eigenvector� We found that when
TDA is of the magnitude of 
�

�� eV� the results given by
the two independent methods were almost the same �the
latter method has much less numerical error and may be
regarded as the strict result��


�



VI� RESULTS AND DISCUSSION

In this Section� we present the computer simulation
results for ET dynamics in azurin� These results were
obtained on the basis of two di�erent levels of approx�
imations �Tab� I�� The �rst level possesses higher ac�
curacy in electronic structure calculation� but it neglects
di�erential overlaps and hence retarded�advanced� over�
laps� In accordance with this� NACs are ignored in the
subsequent electronic dynamics calculation� The second
level is less precise in electronic structure calculation but
it is on nonorthogonal basis and NACs are incorporated
in electronic dynamics calculation�
With the framework of the second level� the e�ect of

NACs on ET dynamics can be proven trivial as long as
unphysical large 
uctuations of basis set are inhibitted�
This sort of false 
uctuation does not exist in a time�
dependent calculation in the AO basis� �In the AO basis�
one can prove that a number of NACs turn out to be
zero� see Appendix B�� As discussed carefully in Section
VC� it originates from the NBO method with which we
transform our simulation into the BO basis� As a matter
of fact� one can estimate the upper bound for Kij ac�
cording to eq��
��� In a normalized basis� the maximum
value for the right hand side of eq��
�� is 
��
t� so the
magnitude of the NAC is 	h&���femtosecond�� � eV� In
reality� the di�erence of retarded and advanced overlaps
is much less than 
� since a protein moves very little dur�
ing a femtosecond �assuming that there is no ultrafast
structural transition��
A major shortcoming of the EH method is that it

severely underestimates the gap� The gap predicted by
it is approximately � eV �ranging from �
� eV� �� eV��
which disagrees with both higher level ab initio results
and experimental results� By performing NBO analysis
for the density matrix and Hamiltonian matrix given by
the EH method� we found that the eigenstates falling into
the interval between �
� eV and �� eV are mainly con�
tributed by the ��s� and the populations residing at the
��s are much bigger than those at the ��s �e�g� the pop�
ulations for C�O antibonds are about ����� compared
with normally less than ���� for ��s�� Therefore� a sim�
ple trick to remedy the EH method is to reparametrize
it in the BO basis� namely� to lift the orbital energies of
��s out of the gap �We did this by adding 
� eV to the
orbital energies of ��s�� The coupling matrix elements
between the ��s and others need not to change� Rediag�
onalizing the modi�ed Hamiltonian matrix� we obtain a
gap ranging from �
� eV to �� eV� compared with �

 eV
� 
 eV predicted by the CNDO method�

TABLE I� Two levels of computer simulation�

Level Orthonormality Method Nonadibatic Coupling

� Orthonormal CNDO�S Ignored
	 Nonorthonormal EH Included

A� Protein electronic structure calculations

Since in this study we simply pick up two orbitals from
the electronic structure of proteins as arti�cial donor and
acceptor �in order to reduce the perturbation of such a
choice to the side chains of the animo acids which are to
accomodate our arti�cial donor and acceptor to the min�
imum� we select the C��H� bonds as donor and acceptor�
we hope this treatment would not jeopardize the general
conclusions made in this research for dynamic ET reac�
tions�� the electronic structure of the bridge has to be
explored in order to decide reasonable values for the en�
ergies of donor and acceptor and tunneling energy� which
are normally inside the gap� Importantly� resonance of
the energy level of donor and acceptor with any of the
bridge eigenstates should be cautiously avoided �other�
wise the electronic propogation will behave like transport
in conductors rather than tunneling�� For a 
uctuating
protein� care must be taken to prevent thermal motion
from injecting electron into the bridge by crossing of ei�
ther highest occupied molecular orbital �HOMO� or low�
est unoccupied molecular orbital �LUMO� of the bridge
with the energy levels of donor and acceptor� Fig� 


shows typical thermal 
uctuations of bridge HOMO and
LUMO� The 
uctuation amplitudes are around ��� eV�
This implies that the energy level of donor and acceptor
should be at least ��� eV above the average HOMO or
below the average LUMO�
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FIG� ��� Shown are the �uctuations of bridge HOMO and
LUMO in a ��� fs MD segment� calculated by using the
CNDO method� Donor was chosen as the C��H� bond of
Cys��� or Met���� The C��H� bonds of other residues were
chosen as the acceptor� The bridge is the remainder of the
electronic structure excluding the donor�acceptor orbital pair�
The HOMO and LUMO of di�erent bridges are indistinguish�
able in the 
gure�

It was also found that bridge HOMO and LUMO were
not a�ected too much by the choice of donor and accep�
tor� In the calculations for Fig� 

� we have chosen the
C��H� bond of Cys

��� or Met��� as the donor and se�
lected other C��H� bonds as the acceptors� the results
of bridge HOMO and LUMO are virtually the same �to
a few decimals�� The invariance of bridge gap to the


�



choice of donor and acceptor comes from the following
facts� First� in the BO basis� the Hamiltonian matrix is
nearly diagonal� Second� the energies of C��H� bonds
are more or less close to each other� Eleminating such
a pair of orbitals �out of a few hundreds� from such a
system does not actually change the eigenenergies of the
remaining states�
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FIG� �	� TDA exponentially decays along the ��sheet� For
strand ������	� donor� Cys���� acceptors� Phe���� Phe����
Met���� Tyr��� and Gln���� For strand �	���	�� donor�
Met���� acceptors� Lys���� Gly���� Thr���� Leu��	 and Thr��
�
The tunneling energy was chosen as ��� eV� Calculated by the
CNDO method� averaged over ��� picosecond�

The e�ective electronic coupling� TDA� falls o� rapidly
with respect to the separation distance between donor
and acceptor RDA� The decay behavior is always de�
scribed by an exponential function

TDA 
 exp ���RDA��� ����

Experiments� revealed that for ��sheet the Cu� to Ru��

distance�decay constant � is about 
�
 %A��� Our CNDO
calculations show that for arti�cial donors and acceptors
the average constant h�i � 
�� � 
�� %A�� if the tunneling
energy is chosen as �
� eV� �Fig� 
���

B� E�ect of bridge dynamics on electron transfer

To exclude the e�ect of donor and acceptor motion�
we freeze the donor and acceptor energies and maintain
them in the resonance regime� In such a way� the ET
dynamics is purely assisted by the bridge motion and de�
termined by its dynamical behavior� The e�ect of bridge
dynamics can be investigated in the following way� �a�
Select a segment of MD trajectory� �nd the resonace con�
dition for donor and acceptor and calculate TDA for the
�rst conformation� �b� Put an electron on the donor site
at time t��� solve the time�dependent Schr�odinger equa�
tion eq���� in accordance with the Hamiltonians etc� ob�
tained for each conformation� get the transfer probabil�
ity PDA�t�� �c� Assume that from the starting point of
the selected trajectory segment on� the system dynamics
is suddenly frozen �imagine this procedure as something

like rapid quenching�� in other words� the subsequent con�
formations are identical to the �rst one� repeat �b� �the
transfer probability thus obtained is denoted by P qu

DA�t���
�d� Do the TD�SA� namely� project the Hamiltonians etc�
to a two�state form� and integrate the two�state quan�
tum equation of motion eq��
�� �the transfer probability
thus obtained is denoted by P �s

DA�t��� It is expected that
P qu
DA�t� will exhibit sinusoidal behavior since donor and
acceptor have been tuned into resonance and there exists
no force to push them o��
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FIG� ��� Strong coupling cases �
p
hT �

DAi � ���� eV
�

�a
 Level � calculation� Cys����D
�Phe����A
� Donor and
acceptor energies are about ��� eV �vicinal to the bridge
HOMO
� the tunneling energy is �� eV� �b
 Level 	 calcula�
tion� Met����D
�Lys����A
� Donor and acceptor energies are
about ��� eV �vicinal to the bridge HOMO
� the tunneling
energy is ��� eV� PDA�t
� P

�s
DA�t
 and P

qu
DA�t
 are denoted by

full lines� dashed lines and long dashed lines� respectively�
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hT �

DAi � ���� eV� �a
 Level � calculation�

Cys����Phe���� Donor and acceptor energies are about ���
eV� the tunneling energy is �� eV� �b
 Level 	 calculation�
Met����Gly���� Donor and acceptor energies are about ��� eV�
the tunneling energy is ��� eV� PDA�t
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respectively�
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DAi � ���� eV� �a
 Level � calculation�

Cys����Gly���� Donor and acceptor energies are about ���
eV� the tunneling energy is ���� eV� �b
 Level 	 calculation�
Met����Thr���� Donor and acceptor energies are about ��� eV�
the tunneling energy is ��� eV� PDA�t
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are denoted by dashed lines� full lines and long dashed lines�
respectively�

Shown in Figs� 
�� 
� and 
� are the ET probilities
calculated by the exact method and the TD�SA method
in the cases of di�erent coupling strength at both com�
putational levels� In Fig� 
�� the donor and acceptor are
so close that the direct interaction between them HDA

constitutes a large part of the total coupling HDA� which
means that the through�space tunneling pathway is im�
portant� It can be seen from the �gures that PDA�t�
deviates from P qu

DA�t� after some time� whereas P
�s
DA�t�

roughly reproduces PDA�t� within a few hundred fem�
toseconds�
The signi�cant di�erence between PDA�t� and P

qu
DA�t�

comes exactly from the e�ect of bridge dynamics on the
ET dynamics� whereas the agreement between PDA�t�
and P �s

DA�t� represents how well a ET dynamics can be
approximated by a simple two�state picture� In fact�
the two�state picture explains why PDA�t� di�ers from
P qu
DA�t�� In the two�state picture� donor and acceptor�
now $dressed$ with backscattering e�ect TDD�t� and
TAA�t�� 
uctuate around the resonance energy levels �see
the inset of Fig� 
��� Such a two�state system certainly
exhibits transfer behavior di�erent from a sinusoidal one�
which occurs when the system is resonant all along� We
performed a series of similiar simulations on various MD
trajectories and found that� for TDA between 
��� eV
and 
��� eV and within typical Landau�Zener time �up
to a few picoseonds�� there is no evidence that the bridge
dynamics would always increase or decrease the transfer
probability� For example� in Fig� 
�� one can see some�
times PDA�t� is smaller than P

qu
DA�t� but sometimes it is

greater� This is somehow counterintuitive since it is read�
ily surmised that a system remaining in resonance should
have more chances to transfer than a system shuttling be�
tween on�resonance and o��resonance has� It hints that�
the thermodynamics of an ET structure might be as im�
portant as its �static� energetics in determining its ET
performance on speci�c conditions�
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FIG� ��� The TD	SA can be improved by changing the
tunneling energy from time to time �results of level � calcu�
lation
� The dashed line is the result predicted by a TD	SA
with a constant tunneling energy throughout the simulation�
the solid line is that by a TD	SA with a variable tunneling
energy� which almost reproduces the exact dynamics� The
stair steps denote the change of tunneling energy� Shown in
the inset is the �uctuation of the e�ective donor�acceptor en�
ergy di�erence� HDD�t
�HAA�t
� which is equivalent to the
e�ect of multiple Landau�Zener crossing of some sort�

The TD�SA with a constant tunneling energy normally
fails after a few hundred femtoseconds� but we found that
by adjusting the tunneling energy E one would be able
to improve the TD�SA if the system is not too coherent�
Fig� 
� shows that by piecewisely tuning E� the TD�SA
can reproduce unambiguously better the exact dynami�
cal behavior� This leads to our conjecture that� the tun�
neling dynamics of a complicated system can always be
described by the concise picture of TD�SA� provided that
the time course of the tunneling energy is appropriately
set� Hence the major task for a successful TD�SA may
be the search of E�t�� At present� we �nd E�t� by sim�
ply using the trial�error method� The result illustrated
in Fig� 
� does not mean that E�t� should necessarily
follow a stepped route�

C� Dynamics of electron transfer between vibrating

donor and acceptor

In the last Subsection we studied ET between frozen
donor and acceptor and concluded that the TD�SA was
valid� In this Subsection� we shall examine if the TD�SA
is still valid in the case that donor and acceptor vibrate
with natural frequencies� By the words $natural frequen�
cies$ we mean that the 
uctuations of donor and accep�
tor energies are fully kept except that at the beginning
of the simulation they are arti�cially $excited$ into the
gap� Like in the last Subsection� all the simulations be�
gin with an initial condition that the donor site has an
electron at time t���
In such cases� both the donor that initially carries the

electron and the acceptor that is to receive the elec�
tron are moving� On one hand� since the system is in
equilibrium� the donor and acceptor energies have many
chances to cross �multiple Landau�Zener crossing�� On
the other hand� the resonance condition for donor and


�



acceptor does not make sense any more since it is only
instantly satis�ed in a vibrational period� In most time
donor and acceptor are o��resonant� In the two�state
picture� the 
uctuations of the e�ective donor and ac�
ceptor energies are composed of those of ED�t��EA�t� and
TDD�t��TAA�t�� In the weakly�coupled limit� the relative
energy level shift induced by the backscattering e�ect�
TDD�t��TAA�t�� is normally believed to be much smaller
than that caused by orbital 
uctuations� ED�t��EA�t��
When the couplings turn stronger� the backscattering ef�
fect will turn out to be more important�
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FIG� ��� Eletron transfer dynamics between vibrating
donor and acceptor for

p
hT �

DAi ���
�� and ���� eV� respec�

tively �level � calculations
� Shown in the upper panels of
�a
 and �b
 are comparison of results in the absence of bridge
motion and those in the presence of bridge motion �exact
�
Shown in the lower panels are comparison of the exact results
with those by the TD	SA with a constant tunneling energy
and variable tunneling energies� The inset in �b
 shows typical
temporal behavior of ED�t
�EA�t
�

Within the current framework� the e�ect of protein
dynamics on ET consists of the e�ect from donor and ac�
ceptor motion and that from bridge motion� Freezing the
bridge and carrying out simulation with only donor and
acceptor moving can help us examine the latter e�ect�
In the upper panels of Fig� 
� �a��b� we show the com�
parisons of such results with the exact ones� The di�er�
ences between them imply that even though the motion

of donor and acceptor themselves looks overwhelming�
the delicate e�ect from bridge motion can be important
in the time scale of up to a few picoseconds�
In the lower panel of Fig� 
� �a��b�� we show that the

TD�SA with appropriately chosen time course of tunnel�
ing energy does well in reproducing the exact dynamics�
Our experience based on a series of simulations suggests
that it seems more di"cult to �nd the right time course
of tunneling energy that enables the TD�SA to repro�
duce the exact dynamics in the presence of donor and
acceptor motion than in the absence of donor and accep�
tor motion �the case in Subsection VIB�� We conjecture
that the 
exibility of donor and acceptor energies might
result in the 
exibility of the tunneling energy� which as a
consequence increases the di"culty of �nding the correct
E�t��

D� Three�center electron transfer dynamics

In Section IV we have shown that the ET dynamics
of a static model three�center system can be reproduced
by a �SA� Here we would like to strengthen the e�ective
three�state picture by showing that the validity of the
�SA in reproducing the exact ET dynamics holds in the
time�dependent case�
We select three C��H� bonds along the ��sheet

as the three redox centers and calculate the transfer
probabilities PDM �t��donor to intermediate state� and
PDA�t��donor to acceptor�� In all simulations for three�
center systems� none of the three redox centers is frozen�
everything else is left as produced by the CHARMM and
electronic structure computations except that we delib�
erately put D�M and A at the same energy level into
the gap for the initial conformation� like we have done
for the two�center systems in Subsection VIC� To imple�
ment the TD�SA� we apply the three�center projection
and solve eq� ��
��
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FIG� ��� Three�center ET dynamics in two systems �level
�
� The dashed lines are exact results� whereas the full lines
are TD�SA results� Tunneling energy is not changed through�
out the period shown in the 
gures�

The simulations started with an initial condition on
which the energies of the donor� the intermediate state�
and the acceptor were all set to be �
� eV and an electron
was introduced to the donor site� It is shown in Fig� 
�
that for two three�center systems the TD�SA is basically
able to describe the dynamical behavior of the systems
for a certain length of time�

VII� CONCLUDING REMARKS

We have performed systematical computer simulations
for ET dynamics in 
uctuating protein� Based on the
simulation results� we have found that it is not appro�
priate to ignore the e�ect of protein dynamics on elec�
tronic tunneling dynamics� We introduce an analogue of
the well�known static two�state approximation� the time�
dependent two�state approximation �and three�state ap�
proximation if three�center ET reaction is involved�� and
show that such a simple approximation is capable of re�
producing the exact ET dynamics of the whole protein�
Although we also have pointed out some issues which
might be unaware before� for example� the importance of
the backscattering matrix elements� it remains an open
question how to incorporate these dynamic factors into
the ET rate theory�
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APPENDIX A

If HDD and HAA are o��resonant and the two�state
Hamiltonian is time�independent� HDD�t� � HDD�
HAA�t� � HAA� and HDA�t� � HDA� we have an an�
alytical solution for the transfer probability

PDA�t� � ND�t��
�H�

DA

K�
sin�

�
K�t� t��

�	h

�

�NA�t�� cos
�

�
K�t� t��

�	h

�
�A
�

where 
 � HDD �HAA�K �
p

� � �H�

DA� ND�t�� and
NA�t�� are the occupancies on the donor and acceptor

sites at time t�� respectively� The two terms in the right
hand side of eq��A
� represent forward and back elec�
tron transfer� �Surprisingly the amplitude for the back
electron transfer is independent on the driving force��
Eq��A
� shows that in static case the backscatterings
TDD and TAA may a�ect the maximum transfer prob�
ability� which equals �H�

DA���HDD � HAA�
� � �H�

DA��
Since it is HDD � HAA � HDD � HAA � TDD � TAA
that actually determines PDA�t�� TDD � TAA may either
reduce or enlarge the e�ective D�A energy di�erence and
therefore enhance or weaken the ET rate� In the static
case� only when 
 � � can a full tunneling occur� The
smaller 
�HDA is� the greater the percentage of tunnel�
ing is� Since the Hamiltonian is static� the energy is
conserved E�t� � ��D�t��D�t�HDD ��

�
A�t��A�t�HAA �

���D�t��A�t���D�t��
�
A�t��HDA � HDD� From the ener�

getic point of view� partial tunneling is easily understood�
The conservation law of energy would be violated if an
electron were fully transfered to the acceptor�

APPENDIX B

The NACs between two distinct �p orbitals vanish�
Kpxpy �t� � Kpypz�t� � Kpzpx�t� � ��

Proof� Select px� pz� rewrite Kpxpz as

Kpxpz�t� �
X

��x�y�z

V�hpxj��pzi �B
�

where V� is the � component of the velocity of the atom�

hpxj�xpzi � lim
���

�
��
��hpx�x� y� z�jpz�x � 
� y� z�i

�hpx�x� y� z�jpz�x � 
� y� z�i�

hpxj�ypzi � lim
���

�
��
��hpx�x� y� z�jpz�x� y � 
� z�i

�hpx�x� y� z�jpz�x� y � 
� z�i�

hpxj�zpzi � lim
���

�
��
��hpx�x� y� z�jpz�x� y� z � 
�i

�hpx�x� y� z�jpz�x� y� z � 
�i�

hpx�x� y� z�jpz�x�
� y� z�i � hpz��z�� y�� x��jpx��z��
� y�� x��i

�
�

��

Z �

�

�r���dr�
Z 	

�

sin ��d��
Z �	

�

d��

�Rpz�
�r��Rpx�

�
p
�r��� � 
� � �r�
 cos ��� cos ��


�



� r� sin �� cos��p
�r��� � 
� � �r�
 cos ��

� �

hpx�x� y� z�jpz�x� y�
� z�i � hpx��x�� z�� y��jpy��x�� z��
� y��i

�
�

��

Z �

�

�r���dr�
Z 	

�

sin ��d��
Z �	

�

d��

�Rpx�
�r��Rpy�

�
p
�r��� � 
� � �r�
 cos ��� sin �� cos��

� r� sin �� sin��p
�r��� � 
� � �r�
 cos ��

� �

hpx�x� y� z�jpz�x� y� z � 
�i � �

��

Z �

�

r�dr

Z 	

�

sin �d�

�
Z �	

�

d�Rpx�r�Rpz �
p
r� � 
� � �r
 cos �� sin � cos�

� r cos � � 
p
r� � 
� � �r
 cos �

� �

Therefore� Kpxpz �t� � �� Q�E�D�
One can also see that the NACs between s and p or�

bitals are nonzero�
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