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Abstract

A central challenge of protein electron-transfer theory is to understand how the protein dynamics influences the electron
Ž .tunneling from donor to acceptor. It is shown that tunneling as a function of time through a fluctuating protein bridge is

drastically different from tunneling through a chemically identical static bridge. The static two-state approximation that leads
to the donor–acceptor matrix element T , is therefore inadequate. A time-dependent two-state approximation is found thatDA

describes the tunneling dynamics through a fluctuating bridge. The fluctuating system electronic Hamiltonians are
constructed from molecular dynamics trajectories at the CNDO-SCF level. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .Electron-transfer ET reactions are important
components of chemical and biological processes
w x1–3 . In a typical reaction, an electron tunnels from

Ž .a localized donor orbital D to a localized acceptor
˚Ž .orbital A located several Angstroms away from D.

Tunneling is mediated by the intervening medium
Ž .between D and A the bridge . The ET rate is given

w xby the nonadiabatic expression 1,3

2p
2K s T FC . 1Ž . Ž .D ™ A DA

"

Ž .FC is the Franck–Condon overlap factor between
D and A vibronic manifolds. T is the bridge-medi-DA
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ated tunneling matrix element between D and A
w xelectronic wavefunctions 4 . The reliable computa-

tion of T is central to the field of protein-media-DA
w xted electron transfer 2 , where one of the main

challenges is to understand how a protein structure
w xinfluences electronic tunneling 3,5 . Traditionally,

ŽT is computed using static protein structures ob-DA

tained from X-ray crystallography and energy mini-
. w xmization . In recent years, several researchers 6–12

have concluded that the dynamics of the protein
structure should be incorporated in the analysis of
T . We address this issue by comparing, as aDA

function of time, tunneling through a fluctuating
protein bridge to tunneling through a chemically
identical static bridge. We first compute the probabil-
ity of electron transfer through a fluctuating b-sheet

Ž .structure Fig. 1 for several pairs of D–A orbitals
chosen to cover different sections of the sheet. Then
we compute the ET probability for the static struc-
ture, using the same D–A pairs as before. The two

0009-2614r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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w xFig. 1. The b-sheet of azurin 13 formed by strands 7 and 8. Electron transfer through this sheet has been studied experimentally and
w xtheoretically 19 . There are four hydrogen bonds between the two strands.

sets of probabilities are compared and it is shown
that they can differ considerably. A question that
immediately arises is whether there exists an ana-
logue of the static two-state approximation that de-
scribes the ET probability through the fluctuating
bridge. We show how to construct a time-dependent
effective two-state Hamiltonian that approximates
well this probability for long times. As in the static
case, the off-diagonal element of such a Hamilto-

Ž . Žnian, T t , describes ET pathways that changeDA
.with time . In contrast to the static case, it is neces-

sary to use a time-dependent tunneling energy for the
construction of the two-state Hamiltonian. Further-

Ž .more, the effective diagonal matrix elements, T tDD
Ž . Ž .and T t , are as important as T t for the de-AA DA

scription of tunneling; they alter the level crossing
dynamics within the two-state approximation.

2. Overview of calculations

The starting point of all calculations here is the
time-dependent Schrodinger equation of the fluctuat-¨

< Ž .:ing donor–bridge–acceptor system, i" d C t r d t
ˆ ˆŽ . < Ž .: Ž . Ž < Ž .:.sH t C t . H t C t is the one-particle

Ž .Hamiltonian state of the transferring electron or
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Ž .hole. In terms of donor–acceptor D–A and bridge
Ž .br subspaces,

ˆ ˆ ˆ ˆH t sH t qH t qH t , 2Ž . Ž . Ž . Ž . Ž .DA br DA – br

where

ˆ < : ² < < : ² <H t s f E f q f E fŽ .DA D D D A A A

< : ² <q f V f qh.c. ,Ž .D DA A

ˆ br br br< : ² <H t s f E fŽ . Ýbr i i i
i

< br: br² br <q f V f qh.c. ,Ž .Ý i i j j
i)j

ˆ br< : ² <H t s f V f qh.c.Ž . Ž .ÝDA – br D D i i
i

< : ² br <q f V f qh.c. . 3Ž .Ž .Ý A A i i
i

� br4In the above equations, f , f , and f denoteD A i

time-dependent D, A, and bridge orbitals which fol-
low the molecular fluctuations. All orbital site-en-
ergies E and all inter-orbital couplings V arei i j

time-dependent. Details of the CNDO-SCF computa-
ˆŽ . Ž .tion of H t from molecular dynamics MD trajec-

tories are given in the next section.
In matrix form, the Schrodinger equation is¨

d
i" C t s H t y i"K t C t , 4Ž . Ž . Ž . Ž . Ž .

d t

if at each time t the basis is orthonormalized,
² Ž . < Ž .: Ž .f t f t sd . H t is the Hamiltonian matrixi j i j

ˆŽ . ² Ž . < Ž . < Ž .:of the system H t s f t H t f t , andi j i j
Ž . ² Ž . < Ž . : Ž .K t s f t df t r d t . C t denotes the statei j i j

vector of the system,

° ¶C tŽ .D

C tŽ .br1

.
C t s where C tŽ . Ž .i.

C tŽ .br N¢ ßC tŽ .A

² < :s f t C t . 5Ž . Ž . Ž .i

For a particular D–A pair, the quantity of interest
is the ET probability

<² < : < 2P t s f t C tŽ . Ž . Ž .DA A

where

< : < :C 0 s f 0 . 6Ž . Ž . Ž .D

Ž . Ž . < Ž . < 2In terms of the C t components, P t s C tDA A
Ž .given C 0 sd .i iD

Ž .The first stage of our calculations Fig. 2 in-
Ž .volves the computation of the probability in Eq. 6

Ž . Ž .using H t of the entire b-sheet in Eq. 4 . In order
to probe pathways that traverse several different
segments of the b-sheet, we must use artificial D–A
pairs located at many different positions along the
sheet. We choose C –H bond orbitals as D–A pairsa

and, to ensure tunneling mediation for all times,
Ž . Ž .E t and E t are shifted by a constant energy intoD A

Ž .the HOMO–LUMO gap of the bridge Fig. 2 . In
order to isolate effects arising from bridge motion
from effects arising from the dynamics of E andD

E , two sets of calculations are carried out at thisA
Ž .stage. In one set top of Fig. 2 , the time-dependen-

Ž . Ž . Ž .cies of E t and E t are retained, and E t ,D A D
Ž .E t cross each other frequently. In the other setA

Ž .bottom of Fig. 2 , the D and A energies are set
equal to their initial values for all times, thus avoid-

Žing D–A level crossings. For each case fluctuating
.and static E , E , we compare tunneling throughD A
Ž Ž . Ž .the dynamic bridge P t or PP t , respectively,DA DA

.in Table 1 to tunneling through a chemically identi-
Ž st Ž . st Ž .cal static bridge P t or PP t , respectively, inDA DA

.Table 1 . Differences between the dynamic- and
static-bridge probabilities show how rapidly the static
tunneling behaviour is lost in the presence of bridge
dynamics. The above comparisons are carried out
among probabilities that involve identical D–A pairs,
MD trajectories, and initial conditions. Furthermore,

Ž . Ž .E 0 and E 0 are always tuned to resonance asD A
Ž .follows. For a given trajectory, we use Eq. 4 with

Ž . Ž .H t sH 0 to compute the ET probability for the
static system frozen at its initial conformation, i.e.,

st Ž . <² Ž . < Ž .: < 2 < Ž .: < Ž .:PP t s f 0 C t with C 0 s f 0 ,DA A D
Ž . Ž .and then we find values of E 0 and E 0 suchD A

st Ž . 2Ž .that PP t ,sin V t . This behaviour is character-DA

istic of static two-state tunneling with T s"rV .DA
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Ž .Fig. 2. Diagram showing the two sets of calculations carried out for each D–A pair and MD trajectory see Table 1 . At ts0 E and ED A

are tuned to resonance inside the HOMO–LUMO energy gap. In one set of calculations, E and E are allowed to fluctuate for t)0, asD A
Ž . Ž .dictated by MD top . In the other set, they are kept constant for t)0 i.e. resonant, bottom . The calculations are done in two stages. In the

Ž . Ž .first stage, we use N=N Hamiltonians N: total number orbitals to compute the D™A ET probability for: i the static bridge frozen at
Ž .its ts0 conformation, ii the dynamic bridge. In the second stage, we construct 2=2 Hamiltonians that reproduce the previously

Ž ) . Ž .computed dynamic-bridge ET probabilities. In the diagrams, br br denotes the ith bridge bond antibond .i i

ŽIn the second stage of our calculations right side
.of Fig. 2 , we construct time-dependent 2=2 Hamil-

tonians that approximate the dynamic-bridge proba-
Ž Ž . Ž .. Ž .bilities P t or PP t . To approximate P t ,DA DA DA

Table 1
Ž Ž . Ž ..Probabilities computed for each D,A pair and MD trajectory refer to Eqs. 2 and 7

ˆ ˆ ˆ ˆŽ . Ž . Ž . Ž .H t qH t H 0 qH 0br DA – br br DA – br

stˆ Ž .H t E t , E t , dynamic bridge: P t E t , E t , static bridge: P tŽ . Ž . Ž . Ž . Ž . Ž .DA D A DA D A DA

2s dy2sˆ Ž . Ž .H t, E , constant E : P ttun tun DA
2s dy2sˆ ˜Ž . Ž .H t, E , variable E : P ttun tun DA

stˆ Ž .H 0 E 0 , E 0 , dynamic bridge: PP t E 0 , E 0 , static bridge: PP tŽ . Ž . Ž . Ž . Ž . Ž .DA D A DA D A DA

2s dy2sˆ Ž . Ž . Ž . Ž .H t, E , constant E : PP t Used to tune E 0 and E 0 to resonancetun tun DA D A
2s dy2sˆ ˜Ž . Ž .H t, E , variable E : PP t for all calculations shown in tabletun tun DA
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ˆŽ . Ž .H t is projected at each time t onto f t andD
Ž .f t . The resulting Hamiltonian isA

ˆ 2sH t , EŽ .tun

< : ² <s f t E t qT t f tŽ . Ž . Ž . Ž .D D DD D

< : ² <q f t E t qT t f tŽ . Ž . Ž . Ž .A A AA A

< : ² <q f t V t qT t f t qh.c.Ž . Ž . Ž . Ž .D DA DA A

7Ž .

where

T t s V t Gbr E ,t V t ,Ž . Ž . Ž . Ž .ÝK L K i i j tun jL
ij

K L sD , A 8Ž . Ž .
br br ˆ br y 1Ž . ² Ž . <and G E , t s f t E y H tŽ .Ž .i j tun i tun

< br Ž .:f t is the energy-domain bridge Green functionj
Ž .E is the tunneling energy . This Hamiltonian istun

< Ž .:used in a 2=2 Schrodinger equation i" d C t r¨
ˆ 2sŽ . < Ž .:d tsH t, E C t to compute an approximatetun

<² Ž . < Ž .: < 2ET probability f t C t . This construction isA

denoted the ‘dynamic two-state approximation’. If a
Ž .constant E is used in Eq. 7 , the approximatetun

dy2sŽ .probability is denoted P t . If E is varied as aDA tun

function of time, the approximate probability is de-
˜dy2sŽ . Ž . Ž .noted P t Table 1 . To approximate PP t ,DA DA

Ž . Ž . Ž . Ž . Ž .we set E t sE 0 and E t sE 0 in Eq. 7 .D D A A

In this case, the approximate probabilities for con-
dy2sŽ .stant and time-varying E are denoted PP ttun DA

˜dy2sŽ . Ž .and PP t respectively Table 1 .DA

2.1. Computational details

The system employed consists of an azurin
w xmolecule 13 solvated by a layer of water molecules

˚with minimum thickness of 7 A. MD simulations are
performed on the whole protein–water system with

w xthe program CHARMM 14 . The system is first
equilibrated for 300 ps using the Verlet algorithm;
the initial 50 ps employes a Langevin dynamics
protocol. After equilibration, several dynamics seg-
ments with duration of at least 1 ps are chosen from
a production trajectory. For each segment, conforma-
tional snapshots of the b-sheet portion formed by

Ž .b-strands 7 and 8 Fig. 1 are stored at 1 fs intervals.
These snapshots are then used to compute the elec-

Ž .tronic Hamiltonian matrix of the entire b-sheet, H t
Ž . Ž .in Eqs. 2 and 4 . For times coinciding with snap-
Ž . � 4shots, H t is the set H of all Hamiltonian matri-

ces obtained from the snapshots of the b-sheet. Each
matrix H is calculated at the CNDO-SCF level and is

� Ž .4expressed in a basis f t of natural lone pairs andi

bondingrantibonding two-center orbitals, using a
w xmodified version of the BONDO program 15 . For

Ž . � 4times between snapshots, H t is obtained from H
via cubic spline interpolation. Within the CNDO-SCF
approximation that neglects overlap in solving the

Ž . ² Ž . < Ž . :secular equation, K t s f t df t r d t in Eq.i j i j
Ž .4 can be ignored. We have examined the effects of

Ž . Ž .K t on P t at the extended-Huckel level and¨i j DA
Ž .found them to be negligible. Given H t for a

particular time segment, two C –H s bonds of thea

backbone are chosen as the D–A pair for the entire
Ž Ž . Ž ..time segment denoted f t , f t . The initialD A

Ž .D–A resonance is achieved by shifting E 0 andD
Ž .E 0 into the HOMO–LUMO gap, and then settingA

< Ž . Ž . w Ž . Ž .x < Ž .E 0 q T 0 y E 0 q T 0 - T 0D D D A A A D A
Ž Ž . Ž .. w xT t is given in Eq. 8 16–18 . The Schrodinger¨K L

Ž Ž ..equation Eq. 4 is propagated with a time step of
10y3 fs to obtain stable solutions.

3. Results and discussion

A large number of simulations were performed
using different MD trajectories and D–A positions.
The D–A pairs chosen either belong to the same

Ž .b-sheet strand covalent pathways or to different
Ž . y2strands hydrogen bond pathways , with 10

2 y5 2 T 2² : ² : Ž . Ž .(0 T )10 eV. T s 1rT H d t T tDA DA 0 DA

where Ts1 ps. In all simulations, the structural
fluctuations do not create resonances between instan-

Ž . Ž .taneous bridge eigenstates and E t , E t .D A

In Fig. 3, we compare typical dynamic- and
Ž .static-bridge probabilities for time-dependent top

Ž . Ž . Ž .and static bottom E , E . a shows P t andD A DA
st Ž . Ž . Ž . st Ž .P t , and b shows PP t and PP t for theDA DA DA

Ž . Ž .D,A orbitals C –H Met-121 and C –H Gly-123 .a a

In both cases, we use the same MD trajectory with
2 y3Ž . Ž . ² :(E 0 ,E 0 ,y10 eV, and T ,10 eV.D A DA

The important observation is that the static-bridge
probability deviates from its dynamic-bridge coun-
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Ž . Ž . Ž . st Ž . Ž . Ž . Ž . Ž . st Ž .Fig. 3. a P t dyn. br. versus P t stat. br. for time-dependent E and E , b PP t dyn. br. versus PP stat. br. for staticDA DA D A DA DA
2 y3 stŽ . Ž . ² : Ž . Ž . Ž . Ž . Ž .E and E . The D,A pair is Ca–H Met-121 and Ca–H Gly-123 with T ,10 eV. c P t dyn. br. versus P t stat. br.(D A DA DA DA

Ž . Ž . Ž . st Ž . Ž .for time-dependent E and E , d PP t dyn. br. versus PP stat. br. for static E and E . The D,A pair is Ca–H Cys-112 andD A DA DA D A
2 y4Ž . ² : Ž . Ž . ² : ² :Ca–H Gly-123 with T ,10 eV. In all cases, E 0 , E 0 ,y10 eV, E ,y11.2 eV, E ,1.5 eV, with rms( DA D A homo lumo

Ž . Ž . Ž . Ž .deviations ,0.25 eV. Also shown in c is E t yE t in units of eV for a segment of the MD trajectory. Multiple D–A levelD A

crossings are visible.

terpart on a fast time scale, approximately 200 fs for
Ž .the time-dependent E , E Fig. 3a , and 40 fs forD A

Ž .the static E , E Fig. 3b .D A

Fig. 3c,d shows analogous plots of dynamic- and
static-bridge probabilities for a different MD trajec-
tory and a larger D–A separation. The D,A pair
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Ž . Ž .chosen is C –H Cys-112 and C –H Gly-123 witha a

Ž . Ž .intervening hydrogen bonds. E 0 ,E 0 ,y10D A
2 y4² :(eV, and T ,10 eV. Again, the deviationDA

between the static- and dynamic-bridge probabilities

occurs at short times, approximately 1 ps in Fig. 3c
and 250 fs in Fig. 3d. As expected, in all of the
above cases, electron transfer is more efficient for

Ž .the static resonant E , E .D A

dy2s ˜dy2sŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Fig. 4. a P t dyn. br. versus P t constant E and P t variable E , for the system of Fig. 3a. b PP t dyn. br.DA DA tun DA tun DA
dy2s ˜dy2s dy2s ˜dy2sŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .versus PP t constant E and PP t variable E , for the system of Fig. 3b. c P t , P t and P t for the system ofDA tun DA tun DA DA DA

dy2s ˜dy2sŽ . Ž . Ž . Ž .Fig. 3c. d PP t , PP t and PP t for the system of Fig. 3d. At the top of each figure we show the time sequence of E used inDA DA DA tun
˜dy2s ˜dy2s dy2s dy2sŽ . Ž . Ž . Ž . Ž . Ž .P t a,c , or PP t b,d . The initial E in the sequence is the value used in P t or PP tDA DA tun DA DA
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The deviation between the dynamic- and static-
bridge probabilities is relevant to the analysis of
electron transfer if it occurs prior to thermal relax-

Ž . Ž .ation of E t and E t from the transition stateD A

region. In this case, the static-bridge description is

Ž .inadequate and, therefore, the static two-state TDA

approximation cannot be used. Our simulations show
Ž Ž ..that the dynamic two-state approximation Eq. 7

provides a good description of dynamic-bridge tun-
neling for longer times than the static-bridge proba-

Ž . Ž . Ž . dy2sŽ . Ž .Fig. 5. a PP t dyn. br. and PP t constant E of Fig. 4d together with the two-state probability obtained from the followingDA DA tun
ˆ 2s dy2sŽ . Ž . Ž . Ž . Ž . Ž . Ž .approximation. In the H t, E used to compute PP t , we set T t sT 0 , T t sT 0 , and retain T t and its Hermitiantun DA AA AA DD DD DA

ˆ 2s dy2sŽ . Ž . Ž . Ž . Ž . w Ž . Ž .x Ž . Ž .conjugate. b Plot of the matrix elements of H t, E used in PP t above. E 0 qT t y E 0 qT t top , T ttun DA D DD A AA DA
Ž . Ž . Ž . w Ž . Ž .x Ž .bottom . The rms deviation of E 0 qT t y E 0 qT t is greater than the rms deviation of T t by three orders ofD DD A AA DA

magnitude.
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bility does. The dynamic two-state approximation
should therefore replace the static two-state approxi-
mation for the description of tunneling.

In Fig. 4 we compare the dynamic-bridge proba-
bilities of Fig. 3 that were obtained by using the full

Ž Ž . Ž ..Hamiltonian of the system P t and PP t , toDA DA

the two types of dynamic two-state probabilities
ˆ 2sŽ .obtained from the reduced Hamiltonian H t, Etun

Ž . Ž . dy2sŽ .in Eq. 7 . Fig. 4a,c are plots of P t , P tDA DA
˜dy2sŽ . Ž . Ž .constant E and P t variable E , for thetun DA tun

D,A pairs and MD trajectories of Fig. 3 and Fig.
Ž . dy2sŽ . Ž .4b,d shows PP t versus PP t constant EDA DA tun

˜dy2sŽ . Ž . Žand PP t variable E , for the D, A pairs MDDA tun
.trajectories of Fig. 3b,d. Superimposed at the top

of each graph is the time sequence of E usedtun
˜dy2s ˜dy2sŽ . Ž Ž .. Ž . Žin P t or PP t to reproduce P t orDA DA DA
Ž ..PP t . The initial E in each sequence is theDA tun

dy2sŽ . Ž dy2sŽ ..value used to compute P t or PP t . TheDA DA

energy scale in all E plots is the same.tun

The main observation in Fig. 4 is that the dy-
namic two-state probability reproduces the
dynamic-bridge N-state probability, for longer times

Žthan the static-bridge N-state probability does shown
.in Fig. 3 . Furthermore, the dynamic two-state ap-

proximation with variable E is much better thantun

its constant E counterpart. We have found that thetun

breakdown of the dynamic two-state approximation
can be avoided by adjusting E at the right time. Atun

comparison between Fig. 4a and 4b indicates that the
necessary adjustments in E for the time-dependenttun

E and E , are greater than the corresponding ad-D A

justments for the static E and E . In Fig. 4a theD A

maximum adjustment per step is 2.8 eV, whereas in
Fig. 4b it is 0.7 eV. A similar trend is observed in
Fig. 4c,d; the tunneling electron exchanges more
energy with its environment when E , E , andD A

bridge fluctuate.
ˆ 2sŽ . Ž .Although T t in H t, E is essential to theDA tun

Ždescription of the tunneling dynamics as it repre-
.sents the effective D–A coupling , the effective di-

Ž . Ž .agonal matrix elements T t and T t are alsoDD AA
Ž . dy2sŽ .very important. Fig. 5a shows PP t and PP tDA DA

Ž .constant E of Fig. 4d. Superimposed on thesetun

two plots is the probability obtained by ignoring in
ˆ 2s dy2sŽ . Ž .H t, E of PP t the time dependence oftun DA

Ž . Ž . Ž Ž ..T t and T t while retaining that of T t .DD AA DA
Ž .The latter probability quickly deviates from PP tDA

dy2sŽ .and PP t , indicating the importance of the effec-DA

tive diagonal matrix elements in the dynamic two-
state approximation. An explanation for this be-

Ž .haviour is given in Fig. 5b where we plot E 0 qD
Ž . w Ž . Ž .x Ž .T t y E 0 qT t , and T t as a functionDD A AA DA

Ž . Ž .of time. T t and T t cause a multitude ofDD AA

‘effective’ D–A level crossings that are absent if
Žthese elements are ignored since the ‘real’ D and A

.energies are fixed . Level crossings are essential to
the description of tunneling dynamics within the
two-state approximation.

4. Conclusion

We have shown that the tunneling dynamics of an
electron between time-dependent donor and acceptor
states that are connected by a fluctuating b-sheet
bridge, is very different from the tunneling dynamics
through a chemically identical static bridge. The
dynamic-bridge ET probability rapidly deviates from
its static-bridge behaviour. The time scale of this
deviation is the time scale of validity of the static
T approximation. The dynamic-bridge probabilityDA

can be approximated for much longer times by use
of an effective time-dependent two-state Hamiltonian
ˆ 2sŽ .H t, E , where E is also a function of time.tun tun

ˆ 2sŽ .The off-diagonal matrix element in H t, E ,tun
Ž .T t , is the time-dependent analogue of the staticDA

T , and it describes time-dependent ET pathways.DA
Ž .The effective diagonal matrix elements T t andDD

Ž .T t , describe effects of the bridge motion on theAA
Ž .tunneling dynamics that cannot be included in T t .DA

When these diagonal elements are added to the real
donor and acceptor energies, they change the level
crossing dynamics of the effective two-state system.
Therefore, their time evolution cannot be ignored.
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