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Abstract

A central challenge of protein electron-transfer theory is to understand how the protein dynamics influences the electron
tunneling from donor to acceptor. It is shown that tunneling (as a function of time) through a fluctuating protein bridge is
drastically different from tunneling through a chemically identical static bridge. The static two-state approximation that leads
to the donor—acceptor matrix element T4, is therefore inadequate. A time-dependent two-state approximation is found that
describes the tunneling dynamics through a fluctuating bridge. The fluctuating system electronic Hamiltonians are
constructed from molecular dynamics trajectories at the CNDO-SCF level. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Electron-transfer (ET) reactions are important
components of chemical and biological processes
[1-3]. In atypica reaction, an electron tunnels from
a localized donor orbital (D) to a localized acceptor
orbital (A) located several Angstroms away from D.
Tunneling is mediated by the intervening medium
between D and A (the bridge). The ET rate is given
by the nonadiabatic expression [1,3]

27

Kpoa= 7 TSA(FC)- (1)

(FC) is the Franck—Condon overlap factor between
D and A vibronic manifolds. Ty, is the bridge-medi-
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ated tunneling matrix element between D and A
electronic wavefunctions [4]. The reliable computa
tion of Ty, is centra to the field of protein-media
ted electron transfer [2], where one of the main
challenges is to understand how a protein structure
influences electronic tunneling [3,5]. Traditionally,
Toa IS computed using static protein structures (ob-
tained from X-ray crystalography and energy mini-
mization). In recent years, several researchers [6—12]
have concluded that the dynamics of the protein
structure should be incorporated in the analysis of
Tpa- We address this issue by comparing, as a
function of time, tunneling through a fluctuating
protein bridge to tunneling through a chemically
identical static bridge. We first compute the probabil-
ity of electron transfer through a fluctuating B-sheet
structure (Fig. 1) for severa pairs of D—A orbitals
chosen to cover different sections of the sheet. Then
we compute the ET probability for the static struc-
ture, using the same D—A pairs as before. The two
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Fig. 1. The B-sheet of azurin [13] formed by strands 7 and 8. Electron transfer through this sheet has been studied experimentally and
theoretically [19]. There are four hydrogen bonds between the two strands.

sets of probabilities are compared and it is shown
that they can differ considerably. A question that
immediately arises is whether there exists an ana-
logue of the static two-state approximation that de-
scribes the ET probability through the fluctuating
bridge. We show how to construct a time-dependent
effective two-state Hamiltonian that approximates
well this probability for long times. As in the static
case, the off-diagonal element of such a Hamilto-
nian, Tpa(t), describes ET pathways (that change
with time). In contrast to the static case, it is neces-
sary to use a time-dependent tunneling energy for the
construction of the two-state Hamiltonian. Further-

more, the effective diagonal matrix elements, Ty (1)
and T,,(1), are as important as T,(t) for the de-
scription of tunneling; they alter the level crossing
dynamics within the two-state approximation.

2. Overview of calculations

The starting point of all calculations here is the
time-dependent Schrodinger equation of the fluctuat-
ing_donor—bridge—acceptor system, i4 d[¥ (1)) / dt
=HM®IP()). HM) (¥(t))) is the one-particle
Hamiltonian (state) of the transferring electron or
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hole. In terms of donor—acceptor (D—A) and bridge
(br) subspaces,

H(t) = Hpa(t) + Hy (1) + Hpa_pe (1), (2)

where

HDA(t) =|¢pYEpldpl + | dp YE{Pal
+ (|¢D>VDA<¢A| + h.C.),

Hi (1) = LIorEM (P

+ X (16 V (P |+ he.),

P>

Hon o (1) = £ (I6p)Vp (4] + h.c.)

+ L (leaVaio™I+ he.). (3)

In the above equations, ¢, ¢,, and {¢} denote
time-dependent D, A, and bridge orbitals which fol-
low the molecular fluctuations. All orbital site-en-
ergies E and al inter-orbital couplings V;; are
time-dependent. Details of the CNDO-SCF computa-
tion of H(t) from molecular dynamics (MD) trajec-
tories are given in the next section.

In matrix form, the Schrodinger equation is
d
iﬁall'(t)=[H(t)—iﬁK(t)]1If(t), (4

if a each time t the basis is orthonormalized,
(¢ (DI (1)) = ;. H(1) is the Hamiltonian matrix
of the sysem H;;(t) = (¢ (DIH(DI, (1)), and
Ki;(t) = (d(DId (1) / dt). W(t) denotes the state
vector of the system,

Co()
Cbrl(t)
v(t)= where C(t)
CbrN(t)
Ca(t)
— (G (DIT(D)). (5)

For a particular D—A pair, the quantity of interest
is the ET probability

PDA(t) = |<¢A(t)|q’(t)>|2
where

[¥(0)) =1$5(0)). (6)

In terms of the W (t) components, Pp,(t) =|C,(t)[?
given C,(0) = §,5.

The first stage of our calculations (Fig. 2) in-
volves the computation of the probability in Eq. (6)
using H(t) of the entire B-sheet in Eq. (4). In order
to probe pathways that traverse several different
segments of the 3-sheet, we must use artificial D—A
pairs located at many different positions along the
sheet. We choose C_,—H bond orbitals as D—A pairs
and, to ensure tunneling mediation for al times,
Ep(1) and EL(t) are shifted by a constant energy into
the HOMO-LUMO gap of the bridge (Fig. 2). In
order to isolate effects arising from bridge motion
from effects arising from the dynamics of E, and
E,, two sets of calculations are carried out at this
stage. In one set (top of Fig. 2), the time-dependen-
cies of Ep(t) and E,(t) are retained, and Ep(t),
E,(t) cross each other frequently. In the other set
(bottom of Fig. 2), the D and A energies are set
equal to their initial values for all times, thus avoid-
ing D—A level crossings. For each case (fluctuating
and static E,, E,), we compare tunneling through
the dynamic bridge (Pp,(t) or £ (1), respectively,
in Table 1) to tunneling through a chemically identi-
cal static bridge (P3,(t) or 223 ,(1), respectively, in
Table 1). Differences between the dynamic- and
static-bridge probabilities show how rapidly the static
tunneling behaviour is lost in the presence of bridge
dynamics. The above comparisons are carried out
among probabilities that involve identical D—A pairs,
MD trgjectories, and initial conditions. Furthermore,
Ep(0) and E,(0) are always tuned to resonance as
follows. For a given trajectory, we use Eq. (4) with
H(t) = H(0) to compute the ET probability for the
static system frozen at its initia conformation, i.e.,
P3N = Kgp QW (1))* with [¥(0)) =[¢(0)),
and then we find values of E,(0) and E,(0) such
that 273, (1) = sin(2t). This behaviour is character-
istic of static two-state tunneling with Ty, = £ /(2.
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Fig. 2. Diagram showing the two sets of calculations carried out for each D—A pair and MD trgjectory (see Table 1). At t=0 Ep and E,
are tuned to resonance inside the HOMO-LUMO energy gap. In one set of calculations, Ey and E, are alowed to fluctuate for t > 0, as
dictated by MD (top). In the other set, they are kept constant for t > 0 (i.e. resonant, bottom). The calculations are done in two stages. In the
first stage, we use N X N Hamiltonians (N: total number orbitals) to compute the D — A ET probability for: (i) the static bridge frozen at
its t=0 conformation, (ii) the dynamic bridge. In the second stage, we construct 2 X 2 Hamiltonians that reproduce the previously
computed dynamic-bridge ET probabilities. In the diagrams, br; (br;") denotes the ith bridge bond (antibond).

In the second stage of our calculations (right side tonians that approximate the dynamic-bridge proba-

of Fig. 2), we construct time-dependent 2 X 2 Hamil- bilities (Ppa(t) or 225,(1)). To approximate Pp,(t),
Table 1
Probabilities computed for each D,A pair and MD tragjectory (refer to Egs. (2) and (7))
|:ibr(t) + ﬁDA—br(t) l:ibr(o) + l-’i\DA—br(O)
Hpa(t) Ep(t), Ea(t), dynamic bridge: Py (t) Ep(t), E(t), static bridge: P, (1)

H25(t, E,,), constant E,,,: P2(t)
H25(t, E,,,), variable Ey,,: PY2(t)

Hpa(0) E(0), EA(0), dynamic bridge: %2, ,(t) Ep(0), EA(0), static bridge: 3 ,(t)
H25(t,E,,,), constant E,,,; 2W2(t) Used to tune Ep(0) and EA(0) to resonance
H 2(t, Ey,), variable Ey,,: 2I25(t) for all calculations shown in table
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H(t) is projected a each time t onto ¢p(t) and
¢da(1). The resulting Hamiltonian is

H2(t,Eyn)
=$p(t)>[ Ep(t) + Tpp(t) [{¢p(1)]
+1da(1)>[ Ea(t) + Tan(t) [<a(V)]
+o(1))[ Voa(t) + Tpa(t) [<a(t)I+ hec.

(7)
where
Tr() = X Vii(1) G (B t) Vin(1),
]
K(L)=D,A (8)

and G (Ey,t) = (P (DI(Eyn— H (1))
Iqub’(t)} is the energy-domain bridge Green function
(E,, is the tunneling energy). This Hamiltonian is
used in a 2 x 2 Schrodinger equation i4 d[¥(t))/
dt =H*(t,E,)I¥(t)) to compute an approximate
ET probability [{ ,(1)I¥(1))|% This construction is
denoted the ‘dynamic two-state approximation’. If a
constant E,,, is used in Eq. (7), the approximate
probability is denoted P2(t). If E,, isvaried asa
function of time, the approximate probability is de-
noted PY2(t) (Table 1). To approximate 2p,(t),
we set Ep(t) = E5(0) and E,(t) = E,(0) in Eq. (7).
In this case, the approximate probabilities for con-
stant and time-varying E,, are denoted #3(t)
and 2%25(t) respectively (Table 1).

2.1. Computational details

The system employed consists of an azurin
molecule [13] solvated by alayer of water molecules
with minimum thickness of 7 A. MD simulations are
performed on the whole protein—water system with
the program CHARMM [14]. The system is first
equilibrated for 300 ps using the Verlet agorithm;
the initial 50 ps employes a Langevin dynamics
protocol. After equilibration, several dynamics seg-
ments with duration of at least 1 ps are chosen from
a production trajectory. For each segment, conforma-
tional snapshots of the B-sheet portion formed by
B-strands 7 and 8 (Fig. 1) are stored at 1 fsintervals.
These snapshots are then used to compute the elec-

tronic Hamiltonian matrix of the entire -sheet, H(t)
in Egs. (2) and (4). For times coinciding with snap-
shots, H(t) is the set {H} of al Hamiltonian matri-
ces obtained from the snapshots of the B-sheet. Each
matrix His calculated at the CNDO-SCF level and is
expressed in a basis {¢;(t)} of natural lone pairs and
bonding /antibonding two-center orbitals, using a
modified version of the BONDO program [15]. For
times between snapshots, H(t) is obtained from {H }
viacubic spline interpolation. Within the CNDO-SCF
approximation that neglects overlap in solving the
secular equation, K;;(t) = (¢, (DId¢,(t)/dt) in Eq.
(4) can be ignored. We have examined the effects of
Ki;j(D) on Pp(t) at the extended-Huckel level and
found them to be negligible. Given H(t) for a
particular time segment, two C,—H o bonds of the
backbone are chosen as the D—A pair for the entire
time segment (denoted ¢ (1), P,(t)). The initial
D-A resonance is achieved by shifting E,(0) and
EA(0) into the HOMO-LUMO gap, and then setting
|Ep(0) + Tpp(0) — [EA(0) + Tua(0)]l < Tpa(0)
(T (D) isgivenin Eq. (8)) [16—18]. The Schrodinger
equation (Eq. (4)) is propagated with a time step of
1073 fs to obtain stable solutions.

3. Results and discussion

A large number of simulations were performed
using different MD trajectories and D—A positions.
The D—A pairs chosen either belong to the same
B-sheet strand (covalent pathways) or to different
strands (hydrogen bond pathways), with 1072
> (T2x) > 1072 eV. (T2,) =(1/T)[q dtTzA()
where T=1 ps. In al simulations, the structural
fluctuations do not create resonances between instan-
taneous bridge eigenstates and E,(t), E(1).

In Fig. 3, we compare typical dynamic- and
static-bridge probabilities for time-dependent (top)
and static (bottom) Ej, E,. (@) shows Pp,(t) and
PA(t), and (b) shows Z,,(t) and Z23,(t) for the
D,A orbitas C —H(Met-121) and C_—H(Gly-123).
In both cases, we use the same MD trajectory with
Ep(0) = E,(0) = —10 eV, and {T3,) =103 eV.
The important observation is that the static-bridge
probability deviates from its dynamic-bridge coun-
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Fig. 3. (@ Ppa(t)(dyn.br.) versus P3A(t)(stat. br.) for time-dependent Ep and E,, (b) £25(1) (dyn. br.) versus 3, (stat.br.) for static
Ep and E,. The D,A pair is Ca—H(Met-121) and Ca—H(Gly-123) with ‘/(T§A> =103 eV. (c) Pp(t)(dyn.br.) versus P, (t)(stat. br.)
for time-dependent Ep and E,, (d) 22p,(1)(dyn. br.) versus &3, (stat. br.) for static E, and E,. The D,A pair is Ca—H(Cys-112) and
Ca—H(Gly-123) with (T2, > =10~% eV. In al cases, Ey(0),E,(0) = —10 &V, {Epomo) = —11.2 &V, {E;ymo) = 1.5 €V, with rms
deviations =0.25 eV. Also shown in (c) is Ep(t) — E5(t) (in units of eV) for a segment of the MD tragjectory. Multiple D—A level
crossings are visible.

terpart on a fast time scale, approximately 200 fs for Fig. 3c,d shows analogous plots of dynamic- and
the time-dependent E,, E, (Fig. 3a), and 40 fs for static-bridge probabilities for a different MD tragjec-
the static E,, E, (Fig. 3b). tory and a larger D—A separation. The D,A pair
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chosen is C —H(Cys-112) and C_—H(Gly-123) with
intervening hydrogen bonds. Ej(0) = E,(0) = —10
eV, and (TZ,) =10"* eV. Again, the deviation
between the static- and dynamic-bridge probabilities

121Met-123Gly (time dep. ED, EA)

3.0e-02
-3
-5
-6
-9.0 80 g8
[ 1 L
Tunneling Energy Et
2.0e-02
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occurs at short times, approximately 1 psin Fig. 3c
and 250 fs in Fig. 3d. As expected, in al of the
above cases, electron transfer is more efficient for
the static (resonant) Ey, E,.

112Cys~123Gly (lime dep. ED, EA)
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________________ |
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Fig. 4. (8 Ppa(t)(dyn.br.) versus P$25(t) (constant E,,,) and PE2(t) (variable E,,), for the system of Fig. 3a (b) #2,,(t)(dyn. br.)
versus 2H2(t) (constant E,,,) and 232(t) (variable E,,,), for the system of Fig. 3b. (¢) Pp(t), PS2(t) and PY2(t) for the system of
Fig. 3c. (d) Zpa(t), 2H25(t) and 2 H2(t) for the system of Fig. 3d. At the top of each figure we show the time sequence of E,,, used in
PI2(t) (a,0), or 2¥2(t) (b,d). The initia E,,, in the sequence is the value used in PZ2(t) or 2I2(t)
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The deviation between the dynamic- and static- inadequate and, therefore, the static two-state (T, )
bridge probabilities is relevant to the analysis of approximation cannot be used. Our simulations show
electron transfer if it occurs prior to thermal relax- that the dynamic two-state approximation (Eq. (7))
ation of Ep(t) and E,(t) from the transition state provides a good description of dynamic-bridge tun-
region. In this case, the static-bridge description is neling for longer times than the static-bridge proba-
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Fig. 5. (@ Zpa(t)(dyn.br.) and PH2(1) (constant E,,,) of Fig. 4d together with the two-state probability obtained from the following
approximation. In the H2(t, E,,,) used to computq@gy,fs(t), we set Tya(1) = TAA(0), Tpp(t) = Tpp(0), and retain Tp(t) and its Hermitian
conjugate. (b) Plot of the matrix elements of H2(t,E,,) used in 2%2(t) above. Ep(0) + Tpp(t) — [EA(0) + TyA(D] (top), Tpa(t)
(bottom). The rms deviation of E(0) + Tpp(t) —[EA(0) + TyA(1)] is greater than the rms deviation of Tp(t) by three orders of
magnitude.
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bility does. The dynamic two-state approximation
should therefore replace the static two-state approxi-
mation for the description of tunneling.

In Fig. 4 we compare the dynamic-bridge proba-
bilities of Fig. 3 that were obtained by using the full
Hamiltonian of the system (Pp,(t) and (1)), to
the two types of dynamic two-state probabilities
obtained from the reduced Hamiltonian H2(t,E,,,)
in Eq. (7). Fig. 4ac are plots of Pp, (1), P2(t)
(constant E,,,) and P¥25(t) (variable E,,), for the
D,A pairs and MD trajectories of Fig. 3 and Fig.
4b,d shows 2, (1) versus #2(t) (constant E,,,)
and 2Y2(t) (variable E,,), for the D, A pairs (MD
trajectories) of Fig. 3b,d. Superimposed at the top
of each graph is the time sequence of E,, used
in PY2(t) (or 2¥2(t)) to reproduce Pp,(t) (or
Ppa(). The initid E,,, in each sequence is the
value used to compute P32(t) (or 2¥2(t)). The
energy scalein al E,, plotsis the same.

The main observation in Fig. 4 is that the dy-
namic two-state probability reproduces the
dynamic-bridge N-state probability, for longer times
than the static-bridge N-state probability does (shown
in Fig. 3). Furthermore, the dynamic two-state ap-
proximation with variable E,,, is much better than
its constant E,,, counterpart. We have found that the
breakdown of the dynamic two-state approximation
can be avoided by adjusting E,,, at the right time. A
comparison between Fig. 4a and 4b indicates that the
necessary adjustmentsin E,,, for the time-dependent
E, and E,, are greater than the corresponding ad-
justments for the static E; and E,. In Fig. 4a the
maximum adjustment per step is 2.8 €V, whereas in
Fig. 4b it is 0.7 eV. A similar trend is observed in
Fig. 4c,d; the tunneling electron exchanges more
energy with its environment when E,, E,, and
bridge fluctuate.

Although Tp,(t) in H2(t,E,,) is essential to the
description of the tunneling dynamics (as it repre-
sents the effective D—A coupling), the effective di-
agonal matrix elements Ty (t) and T,,(t) are also
very important. Fig. 5a shows (1) and #%2(t)
(constant E,,,) of Fig. 4d. Superimposed on these
two plots is the probability obtained by ignoring in

H2(t,E,,) of P¥2(t) the time dependence of

Tpop(t) and T, (1) (while retaining that of T,,(t)).
The latter probability quickly deviates from Z2,(t)
and 2¥2(1), indicating the importance of the effec-

tive diagonal matrix elements in the dynamic two-
state approximation. An explanation for this be-
haviour is given in Fig. 5b where we plot E;(0) +
Top(t) — [EA(0) + T, A(D], and T,(1) as a function
of time. Tpp(t) and T,,(t) cause a multitude of
‘effective’ D—A level crossings that are absent if
these elements are ignored (since the ‘rea’ D and A
energies are fixed). Level crossings are essential to
the description of tunneling dynamics within the
two-state approximation.

4, Conclusion

We have shown that the tunneling dynamics of an
electron between time-dependent donor and acceptor
states that are connected by a fluctuating B-sheet
bridge, is very different from the tunneling dynamics
through a chemically identical static bridge. The
dynamic-bridge ET probability rapidly deviates from
its static-bridge behaviour. The time scale of this
deviation is the time scale of validity of the static
Tpa @pproximation. The dynamic-bridge probability
can be approximated for much longer times by use
of an effective time-dependent two-state Hamiltonian

H2(t,E,,), where E,, is aso a function of time.
The off-diagonal matrix element in H(t, Eun)s

Tpa(t), is the time-dependent analogue of the static
Tpa, @nd it describes time-dependent ET pathways.
The effective diagonal matrix elements Ty (t) and
Taa(1), describe effects of the bridge motion on the
tunneling dynamics that cannot be included in Ty, (1).
When these diagona elements are added to the real
donor and acceptor energies, they change the level
crossing dynamics of the effective two-state system.
Therefore, their time evolution cannot be ignored.
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